def stratMark( dtStart, dtEnd, dFuncArgs ):
    """
    @summary Markovitz strategy, generates a curve and then chooses a point on it.
    @param dtStart: Start date for portfolio
    @param dtEnd: End date for portfolio
    @param dFuncArgs: Dict of function args passed to the function
    @return DataFrame corresponding to the portfolio allocations
    """         
    if not dFuncArgs.has_key('dmPrice'):
        print 'Error:', stratMark.__name__, 'requires dmPrice information'
        return
    
    if not dFuncArgs.has_key('sPeriod'):
        print 'Error:', stratMark.__name__, 'requires rebalancing period'
        return

    if not dFuncArgs.has_key('lLookback'):
        print 'Error:', stratMark.__name__, 'requires lookback'
        return

    if not dFuncArgs.has_key('sMarkPoint'):
        print 'Error:', stratMark.__name__, 'requires markowitz point to choose'
        return 

    ''' Optional variables '''
    if not dFuncArgs.has_key('bAddAlpha'):
        bAddAlpha = False
    else:
        bAddAlpha = dFuncArgs['bAddAlpha']
    
    dmPrice = dFuncArgs['dmPrice']
    sPeriod = dFuncArgs['sPeriod']
    lLookback = dFuncArgs['lLookback']
    sMarkPoint = dFuncArgs['sMarkPoint']

    ''' Select rebalancing dates '''
    drNewRange = pand.DateRange(dtStart, dtEnd, timeRule=sPeriod) + pand.DateOffset(hours=16)
    
    dfAlloc = pand.DataMatrix()
    ''' Go through each rebalance date and calculate an efficient frontier for each '''
    for i, dtDate in enumerate(drNewRange):
        dtStart = dtDate - pand.DateOffset(days=lLookback)
        
        if( dtStart < dmPrice.index[0] ):
            print 'Error, not enough data to rebalance'
            continue  
       
        naRets = dmPrice.ix[ dtStart:dtDate ].values.copy()
        tsu.returnize1(naRets)
        tsu.fillforward(naRets)
        tsu.fillbackward(naRets)
        
        ''' Add alpha to returns '''
        if bAddAlpha:
            if i < len(drNewRange) - 1:
                naFutureRets = dmPrice.ix[ dtDate:drNewRange[i+1] ].values.copy()
                tsu.returnize1(naFutureRets)
                tsu.fillforward(naFutureRets)
                tsu.fillbackward(naFutureRets)
                
                naAvg = np.mean( naFutureRets, axis=0 )
                
                ''' make a mix of past/future rets '''
                for i in range( naRets.shape[0] ):
                    naRets[i,:] = (naRets[i,:] + (naAvg*0.05)) / 1.05
                

        ''' Generate the efficient frontier '''
        (lfReturn, lfStd, lnaPortfolios) = getFrontier( naRets, fUpper=0.2, fLower=0.01 )
        
        lInd = 0
        
        '''
        plt.clf()
        plt.plot( lfStd, lfReturn)'''
        
        if( sMarkPoint == 'Sharpe'):
            ''' Find portfolio with max sharpe '''
            fMax = -1E300
            for i in range( len(lfReturn) ):
                fShrp = (lfReturn[i]-1) / (lfStd[i])
                if fShrp > fMax:
                    fMax = fShrp
                    lInd = i
            '''     
            plt.plot( [lfStd[lInd]], [lfReturn[lInd]], 'ro')
            plt.draw()
            time.sleep(2)
            plt.show()'''
            
        elif( sMarkPoint == 'MinVar'):
            ''' use portfolio with minimum variance '''
            fMin = 1E300
            for i in range( len(lfReturn) ):
                if lfStd[i] < fMin:
                    fMin = lfStd[i]
                    lInd = i
        
        elif( sMarkPoint == 'MaxRet'):
            ''' use Portfolio with max returns (not really markovitz) '''
            lInd = len(lfReturn)-1
        
        elif( sMarkPoint == 'MinRet'):
            ''' use Portfolio with min returns (not really markovitz) '''
            lInd = 0    
                
        else:
            print 'Warning: invalid sMarkPoint'''
            return
    
        
    
        ''' Generate allocation based on selected portfolio '''
        naAlloc = (np.array( lnaPortfolios[lInd] ).reshape(1,-1) )
        dmNew = pand.DataMatrix( index=[dtDate], data=naAlloc, columns=(dmPrice.columns) )
        dfAlloc = dfAlloc.append( dmNew )
    
    dfAlloc['_CASH'] = 0.0
    return dfAlloc
Exemple #2
0
dtEnd = dt.datetime(lYear + 1, 1, 1)
dtStart = dtEnd - dt.timedelta(days=365)
dtTest = dtEnd + dt.timedelta(days=365)
timeofday = dt.timedelta(hours=16)

ldtTimestamps = du.getNYSEdays(dtStart, dtEnd, timeofday)
ldtTimestampTest = du.getNYSEdays(dtEnd, dtTest, timeofday)

dmClose = norgateObj.get_data(ldtTimestamps, lsSymbols, "close")
dmTest = norgateObj.get_data(ldtTimestampTest, lsSymbols, "close")

naData = dmClose.values.copy()
naDataTest = dmTest.values.copy()

tsu.fillforward(naData)
tsu.fillbackward(naData)
tsu.returnize1(naData)

tsu.fillforward(naDataTest)
tsu.fillbackward(naDataTest)
tsu.returnize1(naDataTest)

lPeriod = 21
''' Get efficient frontiers '''
(lfReturn, lfStd, lnaPortfolios, naAvgRets,
 naStd) = getFrontier(naData, lPeriod)
(lfReturnTest, lfStdTest, unused, unused,
 unused) = getFrontier(naDataTest, lPeriod)

plt.clf()
fig = plt.figure()
Exemple #3
0
dtEnd = dt.datetime(lYear+1,1,1) 
dtStart = dtEnd - dt.timedelta(days=365) 
dtTest = dtEnd + dt.timedelta(days=365) 
timeofday=dt.timedelta(hours=16)

ldtTimestamps = du.getNYSEdays( dtStart, dtEnd, timeofday )
ldtTimestampTest = du.getNYSEdays( dtEnd, dtTest, timeofday )

dmClose = norgateObj.get_data(ldtTimestamps, lsSymbols, "close")
dmTest = norgateObj.get_data(ldtTimestampTest, lsSymbols, "close")

naData = dmClose.values.copy()
naDataTest = dmTest.values.copy()

tsu.fillforward(naData)
tsu.fillbackward(naData)
tsu.returnize1(naData)

tsu.fillforward(naDataTest)
tsu.fillbackward(naDataTest)
tsu.returnize1(naDataTest)

lPeriod = 21

''' Get efficient frontiers '''
(lfReturn, lfStd, lnaPortfolios, naAvgRets, naStd) = getFrontier( naData, lPeriod )
(lfReturnTest, lfStdTest, unused, unused, unused) = getFrontier( naDataTest, lPeriod )

plt.clf()
fig = plt.figure()
def stratMark(dtStart, dtEnd, dFuncArgs):
    """
    @summary Markovitz strategy, generates a curve and then chooses a point on it.
    @param dtStart: Start date for portfolio
    @param dtEnd: End date for portfolio
    @param dFuncArgs: Dict of function args passed to the function
    @return DataFrame corresponding to the portfolio allocations
    """
    if not dFuncArgs.has_key('dmPrice'):
        print 'Error:', stratMark.__name__, 'requires dmPrice information'
        return

    if not dFuncArgs.has_key('sPeriod'):
        print 'Error:', stratMark.__name__, 'requires rebalancing period'
        return

    if not dFuncArgs.has_key('lLookback'):
        print 'Error:', stratMark.__name__, 'requires lookback'
        return

    if not dFuncArgs.has_key('sMarkPoint'):
        print 'Error:', stratMark.__name__, 'requires markowitz point to choose'
        return
    ''' Optional variables '''
    if not dFuncArgs.has_key('bAddAlpha'):
        bAddAlpha = False
    else:
        bAddAlpha = dFuncArgs['bAddAlpha']

    dmPrice = dFuncArgs['dmPrice']
    sPeriod = dFuncArgs['sPeriod']
    lLookback = dFuncArgs['lLookback']
    sMarkPoint = dFuncArgs['sMarkPoint']
    ''' Select rebalancing dates '''
    drNewRange = pand.DateRange(dtStart, dtEnd,
                                timeRule=sPeriod) + pand.DateOffset(hours=16)

    dfAlloc = pand.DataMatrix()
    ''' Go through each rebalance date and calculate an efficient frontier for each '''
    for i, dtDate in enumerate(drNewRange):
        dtStart = dtDate - pand.DateOffset(days=lLookback)

        if (dtStart < dmPrice.index[0]):
            print 'Error, not enough data to rebalance'
            continue

        naRets = dmPrice.ix[dtStart:dtDate].values.copy()
        tsu.returnize1(naRets)
        tsu.fillforward(naRets)
        tsu.fillbackward(naRets)
        ''' Add alpha to returns '''
        if bAddAlpha:
            if i < len(drNewRange) - 1:
                naFutureRets = dmPrice.ix[dtDate:drNewRange[i +
                                                            1]].values.copy()
                tsu.returnize1(naFutureRets)
                tsu.fillforward(naFutureRets)
                tsu.fillbackward(naFutureRets)

                naAvg = np.mean(naFutureRets, axis=0)
                ''' make a mix of past/future rets '''
                for i in range(naRets.shape[0]):
                    naRets[i, :] = (naRets[i, :] + (naAvg * 0.05)) / 1.05
        ''' Generate the efficient frontier '''
        (lfReturn, lfStd, lnaPortfolios) = getFrontier(naRets,
                                                       fUpper=0.2,
                                                       fLower=0.01)

        lInd = 0
        '''
        plt.clf()
        plt.plot( lfStd, lfReturn)'''

        if (sMarkPoint == 'Sharpe'):
            ''' Find portfolio with max sharpe '''
            fMax = -1E300
            for i in range(len(lfReturn)):
                fShrp = (lfReturn[i] - 1) / (lfStd[i])
                if fShrp > fMax:
                    fMax = fShrp
                    lInd = i
            '''     
            plt.plot( [lfStd[lInd]], [lfReturn[lInd]], 'ro')
            plt.draw()
            time.sleep(2)
            plt.show()'''

        elif (sMarkPoint == 'MinVar'):
            ''' use portfolio with minimum variance '''
            fMin = 1E300
            for i in range(len(lfReturn)):
                if lfStd[i] < fMin:
                    fMin = lfStd[i]
                    lInd = i

        elif (sMarkPoint == 'MaxRet'):
            ''' use Portfolio with max returns (not really markovitz) '''
            lInd = len(lfReturn) - 1

        elif (sMarkPoint == 'MinRet'):
            ''' use Portfolio with min returns (not really markovitz) '''
            lInd = 0

        else:
            print 'Warning: invalid sMarkPoint' ''
            return
        ''' Generate allocation based on selected portfolio '''
        naAlloc = (np.array(lnaPortfolios[lInd]).reshape(1, -1))
        dmNew = pand.DataMatrix(index=[dtDate],
                                data=naAlloc,
                                columns=(dmPrice.columns))
        dfAlloc = dfAlloc.append(dmNew)

    dfAlloc['_CASH'] = 0.0
    return dfAlloc
Exemple #5
0
import matplotlib.pyplot as plt
from pylab import *
import pandas

print pandas.__version__
#
# Prepare to read the data
startday = dt.datetime(2011, 1, 1)
endday = dt.datetime(2011, 12, 31)
timeofday=dt.timedelta(hours=16)
timestamps = du.getNYSEdays(startday, endday, timeofday)

#
#Read close data from symbols list
dataobj = da.DataAccess('Yahoo')
symbols = dataobj.get_all_symbols()
close = dataobj.get_data(timestamps, symbols, "close", verbose=True)

#
#Calculate daily_return
trading_date = close.index
daily_price = close.values.copy()
daily_rets = close.values.copy()
tsu.fillforward(daily_rets)
tsu.fillbackward(daily_rets)
tsu.returnize0(daily_rets)
sharpe_list = sorted(zip(tsu.get_sharpe_ratio(daily_rets), daily_price[-1, :] / daily_price[0, :] - 1, symbols), reverse=True)
#Filter NaN value
sharpe_list = [f for f in sharpe_list if not math.isnan(f[0]) and not math.isnan(f[1])]
print sharpe_list