Exemple #1
0
        def _Proc(record):
            """Parses a serialized tf.Example record."""
            outputs = [
                ('inputs', tf.io.VarLenFeature(tf.int64)),
                ('targets', tf.io.VarLenFeature(tf.int64)),
                # Default eval weight to 1.0
                ('eval_weight',
                 tf.io.FixedLenFeature([], tf.float32, default_value=1.0)),
            ]
            features = tf.io.parse_single_example(record, dict(outputs))
            for k, v in six.iteritems(features):
                if k != 'eval_weight':
                    features[k] = v.values
                else:
                    eval_weight = v

            src_ids = features['inputs']
            tgt_labels = features['targets']

            # Derive trivial segmentation for unpacked input.
            src_paddings, tgt_ids, tgt_paddings, tgt_weights, bucket_key = _DerivePaddingsAndIds(
                src_ids, tgt_labels)

            src_len = tf.shape(src_ids)[0]
            tgt_len = tf.shape(tgt_ids)[0]
            src_pos = tf.range(src_len, dtype=tf.int32)
            src_seg = tf.zeros_like(src_paddings)
            tgt_pos = tf.range(tgt_len, dtype=tf.int32)
            tgt_seg = tf.zeros_like(tgt_paddings)

            return [
                src_ids, src_paddings, tgt_ids, tgt_paddings, tgt_labels,
                tgt_weights, src_pos, src_seg, tgt_pos, tgt_seg, eval_weight
            ], bucket_key
 def FProp(self,
           theta,
           source_vecs,
           source_paddings,
           target_vecs,
           target_paddings,
           source_segment_id,
           target_segment_id,
           transparent_acc,
           transparent_acc_helper,
           source_task_id=None,
           target_task_id=None):
     del source_task_id
     del target_task_id
     p = self.params
     if p.inputs_from_decoder:
         transformer_output = target_vecs
     else:
         transformer_output = source_vecs
     dim1, dim2 = tf.shape(transformer_output)[0], tf.shape(
         transformer_output)[1]
     softmax_input = tf.reshape(transformer_output, [-1, p.input_dim])
     output_shape = [dim1, dim2, p.num_classes]
     return tf.reshape(
         super(GPipeTransformerSoftmaxLayer,
               self).Logits(theta, [softmax_input]), output_shape)
    def _InputBatch(self):
        p = self.params

        @tf.function
        def ReadData():
            x, y = io_ops.restore_v2(p.ckpt, [p.data, p.label], [''] * 2,
                                     [p.data_dtype, p.label_dtype])
            # Always convert to float32.
            return tf.cast(x, tf.float32), tf.cast(y, tf.float32)

        # Loads data and label into memory and keep it around.
        data, label = ops.cached_call(f=ReadData.get_concrete_function(),
                                      T=[tf.float32, tf.float32])
        b, shape = self.InfeedBatchSize(), list(p.data_shape)
        data = tf.reshape(data, [-1] + shape)
        label = tf.reshape(label, [-1])
        label = py_utils.HasShape(label, [tf.shape(data)[0]])
        sample_ids = ops.random_permutation_sequence(
            num=p.num_samples,
            batch=b,
            repeat=p.repeat,
            seed=p.random_seed if p.random_seed else 0)
        n = tf.shape(sample_ids)[0]
        raw = py_utils.PadOrTrimTo(tf.gather(data, sample_ids), [b] + shape)
        ret = py_utils.NestedMap(
            raw=raw,
            data=self._Preprocess(raw),
            label=py_utils.PadOrTrimTo(tf.gather(label, sample_ids), [b]),
            weight=py_utils.PadOrTrimTo(tf.ones([n], dtype=tf.float32), [b]))
        if not py_utils.use_tpu():
            ret['sample_ids'] = sample_ids
        return ret
    def _Moments(inputs, mask, enable_cross_replica_sum_on_tpu=False):
        """Computes mean and variance over the valid data points in inputs."""
        inputs = py_utils.with_dependencies([
            py_utils.assert_equal(tf.rank(inputs), tf.rank(mask)),
            py_utils.assert_greater_equal(mask, tf.zeros_like(mask)),
        ], inputs)
        rank = tf.rank(mask)
        reduce_over_dims = tf.range(0, rank - 1)
        sum_v = tf.reduce_sum(inputs * tf.cast(mask, inputs.dtype),
                              reduce_over_dims)
        count_v = tf.reduce_sum(mask, reduce_over_dims)
        # Input shape is guaranteed to be a multiple of mask shape because the
        # inputs * mask op above was successfully broadcasted.
        mask_multiplier = tf.shape(inputs)[:-1] // tf.shape(mask)[:-1]
        count_v *= tf.cast(tf.reduce_prod(mask_multiplier), count_v.dtype)
        if py_utils.use_tpu() and enable_cross_replica_sum_on_tpu:
            sum_v = tf.tpu.cross_replica_sum(sum_v)
            count_v = tf.tpu.cross_replica_sum(count_v)

        count_v = tf.maximum(count_v, 1.0)
        mean = sum_v / count_v
        sum_vv = tf.reduce_sum((inputs - mean) * (inputs - mean) * mask,
                               reduce_over_dims)

        if py_utils.use_tpu() and enable_cross_replica_sum_on_tpu:
            sum_vv = tf.tpu.cross_replica_sum(sum_vv)

        variance = py_utils.with_dependencies([
            py_utils.assert_greater_equal(sum_vv, tf.zeros_like(sum_vv)),
        ], sum_vv / count_v)
        return mean, variance
def ComputeSplits(batch_size, num_splits):
    """Creates a tensor of size num_splits of number of values per split.

  Assigns each split floor(batch_size/num_splits) and round-robins
  the remainder (if any) to each split.

  Example::

    batch_size: [5]
    num_splits: 3
    returns: [2, 2, 1]

  Args:
    batch_size: tensor of rank 0, size of tensor to be split
    num_splits: number of splits to split tensor into
  Returns:
    tensor of length num_splits containing sizes of each split
  """
    values = tf.tile(tf.div([batch_size], num_splits),
                     tf.constant([num_splits], dtype=tf.int32))
    mods = tf.tile(tf.constant([1]), tf.math.floormod([batch_size],
                                                      num_splits))
    zeros = tf.tile(tf.constant([0]),
                    tf.subtract(tf.shape(values), tf.shape(mods)))
    mods = tf.concat([mods, zeros], 0)
    ret = tf.add(values, mods)
    # for some reason TF erases shape information if num_splits is 1
    if num_splits == 1:
        ret.set_shape([1])
    return ret
 def Step(recurrent_theta, state0, inputs):
     """Computes one decoder step."""
     del inputs
     with tf.name_scope('single_sampler_step'):
         # Compute logits and states.
         bs_result, bs_state1 = pre_step_callback(
             recurrent_theta.theta,
             recurrent_theta.encoder_outputs,
             tf.expand_dims(state0.ids, 1),  # [batch, 1].
             state0.bs_state,
             num_hyps_per_beam=1)
         batch = tf.shape(bs_result.log_probs)[0]
         state1 = py_utils.NestedMap(timestep=state0.timestep + 1)
         state1.logits = bs_result.log_probs
         # Sample ids from logits. [batch].
         state1.ids = tf.reshape(
             tf.random.stateless_categorical(
                 state1.logits / p.temperature,
                 num_samples=1,
                 seed=tf.stack(
                     [recurrent_theta.random_seed, state0.timestep]),
                 dtype=state0.ids.dtype,
                 name='sample_next_id'), [batch])
         if 'is_last_chunk' in bs_result and p.target_eoc_id >= 0:
             state1.ids = tf.where(
                 tf.math.logical_and(
                     bs_result.is_last_chunk,
                     tf.equal(state1.ids, p.target_eoc_id)),
                 tf.fill(tf.shape(state1.ids), p.target_eos_id),
                 state1.ids)
         state1.bs_state = post_step_callback(
             recurrent_theta.theta, recurrent_theta.encoder_outputs,
             state1.ids, bs_state1)
     return state1, py_utils.NestedMap()
    def FProp(self, theta, input_batch):
        """Encodes source as represented by `inputs` and `paddings`.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      input_batch: A `.NestedMap` with fields:
        - ids: The inputs tensor. It is expected to be of shape [batch, time].
        - paddings: The paddings tensor. Expected shape [batch, time].

    Returns:
      A NestedMap containing:

      - encoded: The encoded features, a tensor of shape [time, batch, depth]
      - padding: of shape [time, batch]
      - segment_id: [time, batch] if packed inputs are supported by the model
        (and all layers), or None otherwise.
    """
        p = self.params
        src_segment_id = None
        with tf.name_scope(p.name):
            # Now the rnn layers.
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)
            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            self._emb_out = xs
            ps = paddings
            # When cc_schedule is specified, make sure lstm_tpl is QuantizedLSTMCell
            # with the same cc_schedule so that the RNN layer output is within
            # clipping range.
            xs = self.rnn[0].FProp(theta.rnn[0], xs, ps)
            xs = self.dropout.FProp(theta.dropout, xs)
            for i in range(1, p.num_lstm_layers):
                layer = self.rnn[i]
                ys, _ = layer.FProp(theta.rnn[i], xs, ps)
                ys = self.dropout.FProp(theta.dropout, ys)
                if hasattr(layer.params, 'cell'):
                    layer_params = layer.params.cell
                else:
                    layer_params = layer.params
                if layer_params.num_input_nodes == layer_params.num_output_nodes:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    # When cc_schedule is specified, make sure lstm_tpl is
                    # QuantizedLSTMCell with the same cc_schedule so that the RNN layer
                    # output is within clipping range.
                    xs = ys
            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id)
    def _AugmentationNetwork(self,
                             series_length,
                             inputs,
                             paddings,
                             global_seed,
                             domain_id_index=0):
        """Returns augmented features.

    Args:
      series_length: Total length of time series.
      inputs: Batch of input features of shape (batch_size, time_length,
        num_freq, channels).
      paddings: Batch of padding vectors of shape (batch_size, time_length).
      global_seed: an integer seed tensor for stateless random ops.
      domain_id_index: domain id index.

    Returns:
      Batch of output features of shape (batch_size, time_length, num_freq,
      channels) obtained by applying random augmentations to inputs.
    """
        p = self.params
        dtype = p.dtype

        # Unstack the features.
        if p.unstack:
            inputs, paddings = self.UnstackFeatures(inputs, paddings)

        lengths = tf.reduce_sum(1 - paddings, 1)
        inputs = self._TimeWarp(inputs,
                                lengths,
                                global_seed=global_seed,
                                dtype=dtype,
                                domain_id_index=domain_id_index)
        inputs = self._TimeMask(inputs,
                                lengths,
                                global_seed=global_seed,
                                noisify=p.use_noise,
                                gaussian_noise=p.gaussian_noise,
                                dtype=dtype,
                                domain_id_index=domain_id_index)
        inputs = self._FrequencyMask(inputs,
                                     global_seed=global_seed,
                                     dtype=dtype,
                                     domain_id_index=domain_id_index)

        # Restack the features after applying specaugment.
        if p.unstack:
            inputs = tf.reshape(
                inputs,
                [tf.shape(inputs)[0], series_length, -1,
                 tf.shape(inputs)[3]])

        return inputs
Exemple #9
0
        def _DerivePaddingsAndIds(src_ids, tgt_labels):
            """tgt_ids is tgt_labels shifted right by one, with a SOS ID prepended."""
            tgt_ids = tf.concat([[p.sos_id], tgt_labels[:-1]], axis=0)
            src_paddings = tf.zeros(tf.shape(src_ids), dtype=tf.float32)
            tgt_paddings = tf.zeros(tf.shape(tgt_ids), dtype=tf.float32)
            tgt_weights = tf.ones(tf.shape(tgt_ids), dtype=tf.float32)

            bucket_key = tf.cast(
                tf.maximum(tf.reduce_sum(1.0 - src_paddings),
                           tf.reduce_sum(1.0 - tgt_paddings)), tf.int32)

            return src_paddings, tgt_ids, tgt_paddings, tgt_weights, bucket_key
    def FProp(self, theta, input_batch):
        p = self.params
        with tf.name_scope(p.name):
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)
            if p.packed_input:
                src_segment_id = tf.expand_dims(
                    tf.transpose(input_batch.segment_ids), 2)
            else:
                src_segment_id = None
            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            summary_utils.histogram('input_emb', xs)
            xs = self.dropout.FProp(theta.dropout, xs)
            ps = paddings
            # Now the rnn layers.
            outputs_list = []
            for i in range(0, p.num_lstm_layers):
                layer = self.rnn[i]
                ys = layer.FProp(theta.rnn[i],
                                 xs,
                                 ps,
                                 segment_id=src_segment_id)
                ys = self.dropout.FProp(theta.dropout, ys)
                if i >= p.residual_start:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    xs = ys
                outputs_list.append(xs)
                summary_utils.histogram('layer_out_%s' % i, xs)

            if p.is_transparent:
                xs = self.transparent_merger.FProp(theta.transparent_merger,
                                                   outputs_list)

            if p.lstm_cell_size * 2 != p.encoder_out_dim:
                # Project to the right depth.
                xs = self.final_proj.FProp(theta.final_proj, xs, ps)
                summary_utils.histogram('final_proj_out', xs)

            if src_segment_id is not None:
                src_segment_id = tf.squeeze(src_segment_id, [2])

            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id)
Exemple #11
0
  def FProp(self, theta, inputs, paddings):
    """Apply convolution to inputs.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      inputs: The inputs tensor. It is expected to be of shape [batch, time,
        frequency, channel]. The time dimension corresponds to the height
        dimension as in images and the frequency dimension corresponds to the
        width dimension as in images.
      paddings: The paddings tensor, expected to be of shape [batch, time].

    Returns:
      outputs, out_paddings pair.
    """
    p = self.params
    with tf.name_scope(p.name):
      inputs = py_utils.with_dependencies([
          py_utils.assert_shape_match(tf.shape(paddings), [-1, -1]),
          py_utils.assert_shape_match(
              tf.shape(inputs),
              tf.concat([
                  tf.shape(paddings),
                  [-1, symbolic.ToStatic(self.input_channels)]
              ], 0))
      ], inputs)

      def _ApplyPadding(tensor_in, padding_in):
        padding_expanded = tf.expand_dims(tf.expand_dims(padding_in, -1), -1)
        return tensor_in * (1.0 - padding_expanded)

      # Zeroing out padded inputs.
      inputs = _ApplyPadding(inputs, paddings)

      # Apply conv on 'inputs'.
      out = self._ApplyConv(theta, inputs)

      if p.partial_conv:
        out = self._RescaleBoundary(out, paddings)
      # NOTE: this may be slightly inaccurate when p.dilation_rate[0] > 1.
      # But there's likely no real problems. Trying to set it gives an error:
      # pooling with SAME padding is not implemented for dilation_rate > 1.
      # NOTE: we use window=p.filter_stride[0] to be compatible with legacy
      # implementation.  Consider updating it to be the actual shape.
      conv_padding = ComputeConvOutputPadding(
          paddings, window=p.filter_stride[0], stride=p.filter_stride[0])
      # Assuming padded nodes will be properly zero-ed out if necessary by
      # sub-sequent layers.
      # out = _ApplyPadding(out, conv_padding)
      out = py_utils.HasShape(
          out, symbolic.ToStatic(self.OutShape(tf.shape(inputs))))
      return out, conv_padding
    def FProp(self, theta, input_batch, state0=None):
        p = self.params
        src_segment_id = None
        with tf.name_scope(p.name):
            # Reshape to [t, b]
            inputs = py_utils.with_dependencies([
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            [-1, -1]),
                py_utils.assert_shape_match(tf.shape(input_batch.ids),
                                            tf.shape(input_batch.paddings))
            ], tf.transpose(input_batch.ids))
            paddings = tf.expand_dims(tf.transpose(input_batch.paddings), 2)

            # Setup streaming states.
            if not state0:
                state0 = self.zero_state(theta, tf.shape(inputs)[1])
            state1 = py_utils.NestedMap(rnn=[None] * p.num_lstm_layers)

            xs = self.emb.EmbLookup(theta.emb, inputs)
            xs = self.ApplyClipping(theta, xs)
            summary_utils.histogram('input_emb', xs)
            xs = self.dropout.FProp(theta.dropout, xs)
            ps = paddings
            # Now the rnn layers.
            outputs_list = []
            for i in range(0, p.num_lstm_layers):
                layer = self.rnn[i]
                ys, state1.rnn[i] = layer.FProp(theta.rnn[i],
                                                xs,
                                                ps,
                                                state0=state0.rnn[i])
                ys = self.dropout.FProp(theta.dropout, ys)
                if i >= p.residual_start:
                    xs += ys  # Residual skip
                    xs = self.ApplyClipping(theta, xs)
                else:
                    xs = ys
                outputs_list.append(xs)
                summary_utils.histogram('layer_out_%s' % i, xs)

            if p.is_transparent:
                xs = self.transparent_merger.FProp(theta.transparent_merger,
                                                   outputs_list)

            return py_utils.NestedMap(encoded=xs,
                                      padding=tf.squeeze(ps, [2]),
                                      segment_id=src_segment_id,
                                      state=state1)
        def InitBeamSearchStateCallback(theta, encoder_outputs,
                                        num_hyps_per_beam):
            """Wrapper for adding bias to _InitBeamSearchStateCallback.

      Exapnds state to track consistency of hypothesis with provided target.

      Args:
        theta: A NestedMap object containing weights' values of this layer and
          its children layers.
        encoder_outputs: A NestedMap computed by encoder.
        num_hyps_per_beam: An int, number hyps to keep for source sentence.

      Returns:
        initial_results: a `.NestedMap` of initial results.
        states: a `.NestedMap` of initial model states that the client
          would like to keep track of for each hyp. The states relevant here
          are:
          time_step: A scalar indicating current step (=0 for initial state) of
            decoder.  Must be provided and maintained by super.
          consistent: A boolean tensor of shape [tgt_batch, 1] which tracks
              whether each hypothesis has exactly matched
              encoder_outputs.targets
              so far.
      """
            initial_results, states = self._InitBeamSearchStateCallback(
                theta, encoder_outputs, num_hyps_per_beam)
            assert hasattr(states, 'time_step')
            num_hyps = tf.shape(encoder_outputs.padding)[1] * num_hyps_per_beam
            # states.consistent is initially all True
            states.consistent = tf.ones([
                num_hyps,
            ], dtype=tf.bool)
            return initial_results, states
 def TileForBeamAndFlatten(tensor):
     tensor = tf.reshape(tensor, [1, -1])  # [1, src_batch]
     tensor = tf.tile(tensor,
                      [num_hyps_per_beam, 1
                       ])  # [num_hyps_per_beam, src_batch]
     tgt_batch = tf.shape(step_ids)[
         0]  # num_hyps_per_beam*src_batch
     return tf.reshape(tensor, [tgt_batch])
    def FProp(self, theta, inputs, paddings=None):
        """Apply batch normalization.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      inputs: The inputs tensor.  Shaped [..., dim].
      paddings: The paddings tensor.  Shaped [..., 1], with the same rank as the
        input tensor.

    Returns:
      Output after applying batch normalization, with the same shape as
      'inputs'.
    """
        p = self.params
        if paddings is None:
            paddings = self._GetDefaultPaddings(inputs)
        with tf.name_scope(p.name):
            norm_mean, norm_variance, beta, gamma = self.ComputeAndUpdateMoments(
                theta, inputs, paddings)
            with tf.control_dependencies([
                    py_utils.assert_greater_equal(
                        norm_variance, tf.zeros_like(norm_variance)),
                    py_utils.assert_shape_match([tf.shape(inputs)[-1]],
                                                tf.shape(norm_mean)),
                    py_utils.assert_shape_match([tf.shape(inputs)[-1]],
                                                tf.shape(norm_variance)),
            ]):
                if p.use_fused_batch_norm_for_eval and self.do_eval:
                    bn_output, _, _ = nn.fused_batch_norm(inputs,
                                                          gamma,
                                                          beta,
                                                          norm_mean,
                                                          norm_variance,
                                                          self._epsilon,
                                                          is_training=False)
                else:
                    bn_output = tf.nn.batch_normalization(
                        inputs, norm_mean, norm_variance, beta, gamma,
                        self._epsilon)

                if p.set_padded_output_to_zero:
                    bn_output *= 1.0 - paddings

            return bn_output
    def _GreedySearchStep(self, theta, encoder_outputs, cur_step, step_ids,
                          hyp_ids, hyp_lens, done_hyps, other_states,
                          pre_beam_search_step_callback,
                          post_beam_search_step_callback):
        """Extend greedy search hyps for one step.

    Args:
      theta: A `.NestedMap` object containing weights' values of the decoder
        layer and its children layers.
      encoder_outputs: A `.NestedMap` containing encoder outputs to be passed to
        the callbacks.
      cur_step: A scalar int tensor, the current time step, 0-based.
      step_ids: An int tensor of shape [num_hyps, 1]. The input ids to the
        current search step.
      hyp_ids: An int tensor of shape [num_hyps, tgt_seq_len].
      hyp_lens: Valid length of all the hyps. Tokens after eos ids are not
        counted.
      done_hyps: Whether or not a hyp has finished.
      other_states: A `.NestedMap` of other beam search states. This
        `.NestedMap` is managed and updated by the client. It is expected that
        each of its member tensors are of rank >= 1. t[i, ...] is the state of
        the i-th hyp at the beginning of this search step.
      pre_beam_search_step_callback: The `PreBeamSearchStepCallback` callback.
        See class header comments for more details.
      post_beam_search_step_callback: The `PostBeamSearchStepCallback` callback.
        See class header comments for more details.

    Returns:
      A tuple of following elements for the next greedy search step,
      (next step, new_step_ids, hyp_ids, hyp_lens, done_hyps, other_states)
    """
        p = self.params
        # Increment hyp_lens by 1 if the hyp is not finished yet.
        hyp_lens = hyp_lens + (1 - tf.cast(done_hyps, tf.int32))

        bs_results, new_other_states = pre_beam_search_step_callback(
            theta, encoder_outputs, step_ids, other_states,
            1)  # num_hyps_per_beam
        new_step_ids = tf.math.argmax(bs_results.log_probs, 1)
        new_step_ids = tf.cast(new_step_ids, tf.int32)
        new_step_ids = tf.reshape(new_step_ids, tf.shape(step_ids))
        final_other_states = post_beam_search_step_callback(
            theta, encoder_outputs, new_step_ids, new_other_states)

        # Stash new_step_ids into the right slot.
        new_step_ids_1d = tf.reshape(new_step_ids, [-1])
        hyp_ids = inplace_ops.alias_inplace_update(hyp_ids, cur_step,
                                                   new_step_ids_1d)
        # Update done_hyps if the current step_ids is the end of sequence token.
        done_hyps = tf.math.logical_or(
            done_hyps, tf.equal(new_step_ids_1d, p.target_eos_id))

        return (cur_step + 1, new_step_ids, hyp_ids, hyp_lens, done_hyps,
                final_other_states)
    def FProp(self, theta, inputs):
        """Applies batch normalization.

    Using the implementation in github.com/
    tensorflow/tpu/blob/master/models/official/amoeba_net/network_utils.py#L550

    Args:
      theta: A nested map object containing weights' values of this layer and
        its children layers.
      inputs: The inputs tensor.  Shaped [..., dim].

    Returns:
      Output after applying batch normalization, with the same shape as
      'inputs'.
    """
        p = self.params
        inputs_dtype = inputs.dtype
        inputs = tf.cast(inputs, p.dtype)
        inputs = py_utils.with_dependencies([
            py_utils.assert_shape_match([tf.shape(inputs)[-1]],
                                        tf.shape(theta.beta))
        ], inputs)
        with tf.name_scope(p.name) as scope:
            if self.do_eval:
                outputs = tf.nn.batch_normalization(inputs, theta.moving_mean,
                                                    theta.moving_variance,
                                                    theta.beta, theta.gamma,
                                                    p.epsilon)
            else:
                mean, variance = self._Moments(inputs, p.bn_group_size)
                mean = py_utils.CheckNumerics(
                    mean, 'mean of {} failed numeric check'.format(scope))
                variance = py_utils.CheckNumerics(
                    variance,
                    'variance of {} failed numeric check'.format(scope))
                outputs = tf.nn.batch_normalization(inputs, mean, variance,
                                                    theta.beta, theta.gamma,
                                                    p.epsilon)
            outputs.set_shape(inputs.get_shape())
            return tf.cast(outputs, inputs_dtype)
            def ApplyBias():
                """Bias and update log_probs and consistent."""
                def TileForBeamAndFlatten(tensor):
                    tensor = tf.reshape(tensor, [1, -1])  # [1, src_batch]
                    tensor = tf.tile(tensor,
                                     [num_hyps_per_beam, 1
                                      ])  # [num_hyps_per_beam, src_batch]
                    tgt_batch = tf.shape(step_ids)[
                        0]  # num_hyps_per_beam*src_batch
                    return tf.reshape(tensor, [tgt_batch])

                # Consistent if step_ids == labels from previous step
                # TODO(navari): Consider updating consistent only if weights > 0. Then
                # re-evaluate the need for bias_only_if_consistent=True.
                # Note that prev_label is incorrrect for step 0 but is overridden later
                prev_label = TileForBeamAndFlatten(
                    tf.gather(labels, tf.maximum(time_step - 1, 0), axis=1))
                is_step0 = tf.equal(time_step, 0)
                local_consistence = tf.math.logical_or(
                    is_step0, tf.equal(prev_label, tf.squeeze(step_ids, 1)))
                consistent = tf.math.logical_and(states.consistent,
                                                 local_consistence)

                # get label, weight slices corresponding to current time_step
                label = TileForBeamAndFlatten(
                    tf.gather(labels, time_step, axis=1))
                weight = TileForBeamAndFlatten(
                    tf.gather(weights, time_step, axis=1))
                if p.bias_only_if_consistent:
                    weight = weight * tf.cast(consistent, p.dtype)

                # convert from dense label to sparse label probs
                vocab_size = tf.shape(bs_results.log_probs)[1]
                uncertainty = tf.constant(
                    1e-10,
                    p.dtype)  # avoid 0 probs which may cause issues with log
                label_probs = tf.one_hot(
                    label,
                    vocab_size,
                    on_value=1 - uncertainty,
                    off_value=uncertainty / tf.cast(vocab_size - 1, p.dtype),
                    dtype=p.dtype)  # [tgt_batch, vocab_size]
                pred_probs = tf.exp(bs_results.log_probs)

                # interpolate predicted probs and label probs
                weight = tf.expand_dims(weight, 1)
                probs = py_utils.with_dependencies([
                    py_utils.assert_less_equal(weight, 1.),
                    py_utils.assert_greater_equal(weight, 0.)
                ], (1.0 - weight) * pred_probs + weight * label_probs)
                return tf.math.log(probs), consistent
Exemple #19
0
        def ReOrderHyps(x_in):
            """Reorders x_in based on prev hyp ids."""
            if isinstance(x_in, tf.Tensor) and x_in.shape.ndims > 0:
                # For rank > 1 tensors we make use of an efficient matmul based gather
                # on tpu that takes in account the range of the values. For R1, we
                # rely on the tf.gather and xla to optimize it efficiently for R1
                # layout.
                if x_in.shape.ndims > 1:
                    if p.batch_major_state:
                        num_hyps = tf.shape(old_hyp_ids)[0]
                        x_out = beam_search_tpu_ops.fast_gather(
                            x_in,
                            old_hyp_ids,
                            num_hyps,
                            max_value=None,
                            batch_major_state=p.batch_major_state)
                    else:
                        # Use corrected indices only here for batch major compute as
                        # key/value caches are the states being affected.
                        correct_old_hyp_ids = (old_hyp_ids_in_cache_order
                                               if p.batch_major_compute else
                                               old_hyp_ids)

                        def _GatherStep(x_in, t):
                            """Gather for one time step.

              Args:
                x_in: in the shape of [T, B, ...] we first get slice(t) from the
                  tensors, then gather old_hyp_ids from the slice and write the
                  interpolated slice inplace to update the original x_in.
                t: current time step

              Returns:
                Updated x_in and time step
              """
                            x = tf.gather(tf.gather(x_in, t),
                                          correct_old_hyp_ids)
                            return inplace_ops.alias_inplace_update(
                                x_in, t, x), t + 1

                        x_out, _ = tf.while_loop(
                            lambda _, t: t <= cur_step, _GatherStep,
                            (x_in, tf.zeros([], tf.int32)))
                else:
                    x_out = tf.gather(x_in, old_hyp_ids)
                x_out.set_shape(x_in.get_shape())
                return x_out
            else:
                return x_in
def SplitTensors(xs, num_splits):
    """Splits tensors in `xs` evenly into num_splits along the 1st dimenion.

  Args:
    xs: A tuple of tensors. Each tensor's 1st dimension is the same size.
    num_splits: A python integer.

  Returns:
    A tuple of lists of tensors, num elements in the tuple = len(xs).

    i-th element in each list corresponds to i-th split of each tensor in xs
    along the first dimension of each tensor.
  """
    # assert first dim of all tensors in xs is equal
    batch_dims = [tf.shape(x)[0] for x in xs]
    all_batch_dims = tf.stack(batch_dims)

    all_batch_dims = py_utils.with_dependencies([
        py_utils.assert_equal(all_batch_dims,
                              tf.shape(xs[0])[0],
                              message='first dim of tensors in xs must match'),
        py_utils.assert_greater_equal(
            tf.shape(xs[0])[0],
            num_splits,
            message='first dim of tensors in xs must be greater than num_splits'
        )
    ], all_batch_dims)

    splits = ComputeSplits(tf.shape(xs[0])[0], num_splits)
    # add the above assertion into the compute graph
    splits = py_utils.with_dependencies([all_batch_dims], splits)
    split_xs = [
        tf.split(axis=0, num_or_size_splits=splits, value=x) for x in xs
    ]

    return split_xs
 def GetEncoderEmbeddingsDefaultTheta(self, input_ids, task_ids=None):
     p = self.params
     time_dim = 0 if p.batch_dim else 1
     seq_len = tf.shape(input_ids)[time_dim]
     input_embs = self.src_token_emb.EmbLookup(self.theta.src_token_emb,
                                               input_ids)
     pos_embs = tf.expand_dims(
         self.src_pos_emb.FProp(self.theta.src_pos_emb, seq_len),
         p.batch_dim)
     input_embs += pos_embs
     if task_ids is not None and p.enc_task_emb:
         input_embs += self.src_task_emb.EmbLookup(self.theta.src_task_emb,
                                                   task_ids)
     input_embs = self.src_dropout.FProp(self.theta.src_dropout, input_embs)
     return input_embs
def SequenceLength(padding):
  """Computes the length of a sequence based on binary padding.

  Args:
    padding: A tensor of binary paddings shaped [batch, seqlen].

  Returns:
    seq_lens, A tensor of shape [batch] containing the non-padded length of each
      element of plot_tensor along the batch dimension.
  """
  seq_lens = tf.cast(tf.round(tf.reduce_sum(1 - padding, axis=1)), tf.int32)
  # Get rid of any extra dimensions.
  batch_size = tf.shape(padding)[0]
  seq_lens = tf.reshape(seq_lens, [batch_size], name='seq_lens')
  return seq_lens
    def GetEmbeddings(self, emb_theta, emb, pos_emb_theta, pos_emb,
                      dropout_theta, dropout, input_ids, input_pos_ids,
                      task_emb_theta, task_emb, task_ids):
        p = self.params
        time_dim = 0 if p.batch_dim else 1
        seq_len = tf.shape(input_ids)[time_dim]
        input_embs = emb.EmbLookup(emb_theta, input_ids)
        if p.packed_input:  # Packed inputs.
            pos_embs = pos_emb.FPropWithPosition(pos_emb_theta, input_pos_ids)
        else:
            pos_embs = tf.expand_dims(pos_emb.FProp(pos_emb_theta, seq_len),
                                      p.batch_dim)

        input_embs += pos_embs
        if task_emb:
            input_embs += task_emb.EmbLookup(task_emb_theta, task_ids)
        input_embs = dropout.FProp(dropout_theta, input_embs)
        return input_embs
    def _FrequencyMask(self,
                       inputs,
                       global_seed,
                       dtype=tf.float32,
                       domain_id_index=0):
        """Applies frequency masking with given degree to inputs.

    Args:
      inputs: Batch of input features of shape (batch_size, time_length,
        num_freq, channels).
      global_seed: an integer seed tensor for stateless random ops.
      dtype: Data type.
      domain_id_index: domain id index.

    Returns:
      Inputs with random frequency masking applied.
    """
        p = self.params

        # Mask parameters.
        freq_mask_max_bins = p.freq_mask_max_bins[domain_id_index]
        multiplicity = p.freq_mask_count[domain_id_index]

        # If masking length or count is zero, do nothing.
        if freq_mask_max_bins == 0 or multiplicity == 0:
            return inputs

        # Arguments to pass to mask generator.
        batch_size, _, num_freq, _ = py_utils.GetShape(inputs)
        choose_range = tf.cast(tf.broadcast_to(num_freq, (batch_size, )),
                               dtype=tf.int32)
        # Create masks in frequency direction and apply.
        block_arrays = self._GetMask(tf.shape(inputs)[0],
                                     choose_range=choose_range,
                                     mask_size=num_freq,
                                     global_seed=global_seed,
                                     max_length=freq_mask_max_bins,
                                     masks_per_frame=0.0,
                                     multiplicity=multiplicity,
                                     dtype=dtype,
                                     max_ratio=1.0)
        return self.EinsumBxycByBxyc(inputs, block_arrays)
Exemple #25
0
  def FProp(self, theta, inputs):
    """Apply projection to inputs.

    Args:
      theta: A NestedMap object containing weights' values of this layer and its
        children layers.
      inputs: The inputs tensor.  Shaped [..., input_dims].

    Returns:
      Projected inputs.
    """
    p = self.params
    with tf.name_scope(p.name):
      computation_cost.Add(
          self, 'flops',
          tf.reduce_prod(tf.cast(tf.shape(inputs)[:-1], tf.int64)) *
          tf.cast(symbolic.ToTensor(p.input_dims * p.output_dims), tf.int64) *
          2)
      return py_utils.ProjectLastDim(inputs, theta.w, p.input_dims,
                                     p.output_dims)
Exemple #26
0
    def Finalize(self):
        """Finishes creation of the overall figure, returning the image summary."""
        subplot_grid_shape = self._subplot_grid_shape
        if subplot_grid_shape is None:
            subplot_grid_shape = (len(self._subplots), 1)

        # AddMatplotlibFigureSummary (due to restrictions of py_func) only supports
        # flattened list of tensors so we must do some bookkeeping to maintain a
        # mapping from _SubplotMetadata object to flattened_tensors.
        subplot_slices = []
        flattened_tensors = []
        for subplot in self._subplots:
            start = len(flattened_tensors)
            subplot_slices.append((start, start + len(subplot.tensor_list)))
            flattened_tensors.extend(subplot.tensor_list)

        def PlotFunc(fig, *numpy_data_list):
            gs = gridspec.GridSpec(*subplot_grid_shape,
                                   **self._gridspec_kwargs)
            for n, subplot in enumerate(self._subplots):
                axes = fig.add_subplot(gs[n])
                start, end = subplot_slices[n]
                subplot_data = numpy_data_list[start:end]
                subplot.plot_func(fig, axes, *subplot_data)

        func = functools.partial(_RenderMatplotlibFigures, self._figsize,
                                 self._max_outputs, PlotFunc)
        batch_sizes = [tf.shape(t)[0] for t in flattened_tensors]
        num_tensors = len(flattened_tensors)
        with tf.control_dependencies([
                tf.assert_equal(batch_sizes, [batch_sizes[0]] * num_tensors,
                                summarize=num_tensors)
        ]):
            rendered = tf.py_func(func,
                                  flattened_tensors,
                                  tf.uint8,
                                  name='RenderMatplotlibFigures')
        return tf.summary.image(self._name,
                                rendered,
                                max_outputs=self._max_outputs)
 def GetDecoderEmbeddingsDefaultTheta(self,
                                      input_ids,
                                      task_ids=None,
                                      t=None):
     p = self.params
     input_embs = self.tgt_token_emb.EmbLookup(self.theta.tgt_token_emb,
                                               input_ids)
     if t is None:
         time_dim = 0 if p.batch_dim else 1
         seq_len = tf.shape(input_ids)[time_dim]
         pos_embs = tf.expand_dims(
             self.tgt_pos_emb.FProp(self.theta.tgt_pos_emb, seq_len),
             p.batch_dim)
     else:  # Support decoding.
         pos_embs = tf.slice(
             self.tgt_pos_emb.FProp(self.theta.tgt_pos_emb, p.max_seq_len),
             [t, 0], [1, p.token_emb.embedding_dim])
     input_embs += pos_embs
     if task_ids is not None and p.dec_task_emb:
         input_embs += self.tgt_task_emb.EmbLookup(self.theta.tgt_task_emb,
                                                   task_ids)
     input_embs = self.tgt_dropout.FProp(self.theta.tgt_dropout, input_embs)
     return input_embs
    def FProp(self,
              theta,
              source_input,
              source_paddings,
              target_input=None,
              target_paddings=None,
              source_segment_id=None,
              target_segment_id=None,
              labels=None,
              label_weights=None,
              source_pos_id=None,
              target_pos_id=None,
              source_task_id=None,
              target_task_id=None):
        """Transforms source sequence of Tensors with Transformers layers.

    Args:
      theta: A `.NestedMap` object containing weights' values of this layer and
        its children layers.
      source_input:  A sequence of ints indicating source input ids of [time,
        batch] shape or [batch, time] if batch_dim is 0.
      source_paddings: A sequence of 0s and 1s indicating input paddings of
        [time, batch] shape or [batch, time] if batch_dim is 0.
      target_input: A sequence of ints indicating target input ids of [time,
        batch] shape or [batch, time] if batch_dim is 0.
      target_paddings: [target_time, target_batch] or [target_batch,
        target_time] if batch_dim is 0.
      source_segment_id: A sequence of ints indicating source segment ids of
        [time, batch] shape or [batch, time] if batch_dim is 0.
      target_segment_id: A sequence of ints indicating target segment ids of
        [time, batch] shape or [batch, time] if batch_dim is 0.
      labels: A sequence of ints indicating label ids of [time, batch] shape,
        or [batch, time] if batch_dim is 0.
      label_weights: A sequence of floats indicates label weights of [time,
        batch] shape, or [batch, time] if batch_dim is 0.
      source_pos_id: A sequence of ints indicating source position ids of [time,
        batch] shape, or [batch, time] if batch_dim is 0.
      target_pos_id: A sequence of ints indicating target position ids of [time,
        batch] shape, or [batch, time] if batch_dim is 0.
      source_task_id: A sequence of ints indicating source task ids of [time,
        batch] shape, or [batch, time] if batch_dim is 0.
      target_task_id: A sequence of ints indicating target task ids of [time,
        batch] shape, or [batch, time] if batch_dim is 0.

    Returns:
      transformer_output with shape [time, batch, dim] or [batch, time, dim]
      if batch_dim is 0.
    """
        p = self.params
        if p.num_decoder_layers > 0:
            assert target_input is not None
            assert target_paddings is not None
        if p.packed_input:
            assert source_segment_id is not None, (
                'Need to specify src_segment_id if packed input is supported.')
            assert source_pos_id is not None, (
                'Need to specify src_pos_id for packed input and embeddings.')

        logits = super(GPipeTransformerStack,
                       self).FProp(theta, source_input, source_paddings,
                                   target_input, target_paddings,
                                   source_segment_id, target_segment_id,
                                   source_pos_id, target_pos_id,
                                   source_task_id, target_task_id)
        if not p.softmax_tpl:
            return logits
        label_weights = tf.reshape(label_weights, [-1])
        target_probs = None
        if p.label_smoothing:
            if p.batch_dim:  # Time-major
                target_probs = tf.transpose(
                    self.smoother.FProp(theta.smoother,
                                        tf.transpose(target_paddings),
                                        tf.transpose(labels),
                                        target_ids=None), [1, 0, 2])
            else:
                target_probs = self.smoother.FProp(theta.smoother,
                                                   target_paddings,
                                                   labels,
                                                   target_ids=None)
            target_probs = tf.reshape(target_probs,
                                      [-1, p.softmax_tpl.num_classes])
        reshaped_logits = tf.reshape(logits, [-1, p.softmax_tpl.num_classes])
        tgt_labels = tf.reshape(labels, [-1])
        num_splits = len(p.splits)
        softmax = self.children['cell_{}'.format(num_splits - 1)].softmax
        softmax_theta = theta['cell_{}'.format(num_splits - 1)].softmax
        per_example_xent, _ = softmax.XentLossFromLogits(
            softmax_theta,
            reshaped_logits,
            class_weights=tf.reshape(label_weights, [-1]),
            class_ids=tgt_labels,
            class_probabilities=target_probs)
        xent_shape = tf.shape(logits)[:2]
        per_example_xent = tf.reshape(per_example_xent, xent_shape)
        return per_example_xent, logits
Exemple #29
0
  def _EncodeToIds(self, word):
    # Below:
    #   * a token is a wordpiece ID.
    #   * the tokens array will be merged in-place.
    #   * the candidates array is an array of size len(tokens) - 1.
    #     It contains the token for the merged wordpiece, if it exists,
    #     -1 otherwise. For instance, candidate[3] = id(token[3] + token[4]).
    # First, split into basic UTF-8 characters (letters).
    chars = tf.strings.unicode_split(word, 'UTF-8')
    tokens = self._StringToToken(chars)
    tokens = tf.where(
        tf.equal(tokens, NO_TOKEN),
        # Unseen character.
        tf.broadcast_to(self.unk_id, tf.shape(tokens)),
        tokens)
    # Create initial candidate list.
    candidates = tf.map_fn(
        self._MergeTokens, (tokens[:-1], tokens[1:]), dtype=tokens.dtype)

    def _ShouldMerge(unused_tokens, candidates):
      """Merge until not possible, or we abort early according to merge_prob."""
      return tf.math.logical_and(
          tf.reduce_any(tf.not_equal(candidates, NO_TOKEN)),
          tf.random.uniform([]) < self._merge_prob)

    def _MergeOneToken(tokens, i):
      return tf.expand_dims(
          self._MergeTokens((tokens[i], tokens[i + 1])), axis=-1)

    def _MergeCandidates(tokens, candidates):
      """Merge in the reverse binary tree."""
      best_id = tf.argmin(candidates, output_type=tf.int32)
      # Perform the merge at position best_id.
      tokens = tf.concat(
          [tokens[:best_id], [candidates[best_id]], tokens[best_id + 2:]],
          axis=0)
      # Recompute the merge candidates.
      # Only the neighbors of best_id need to be recomputed.
      empty = tf.zeros([0], dtype=candidates.dtype)

      def _MergeLeft():
        return tf.concat(
            [candidates[:best_id - 1],
             _MergeOneToken(tokens, best_id - 1)],
            axis=0)

      left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft)

      def _MergeRight():
        return tf.concat(
            [_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0)

      right_candidates = tf.cond(
          tf.greater_equal(best_id,
                           tf.size(tokens) - 1), lambda: empty, _MergeRight)

      candidates = tf.concat([left_candidates, right_candidates], axis=0)
      return tokens, candidates

    return tf.while_loop(
        _ShouldMerge,
        _MergeCandidates, (tokens, candidates),
        parallel_iterations=1,
        back_prop=False)[0]
Exemple #30
0
 def _StringToToken(self, tokstr):
   return tf.where(
       ops.token_in_vocab(tokstr, vocab=self._pieces),
       ops.vocab_token_to_id(tokstr, vocab=self._pieces),
       tf.broadcast_to(NO_TOKEN, tf.shape(tokstr)))