Exemple #1
0
 def should_defending(self):
     ball = self.info.ball
     car = self.info.my_car
     our_goal = self.info.my_goal.center
     car_to_ball = ball.pos - car.pos
     in_front_of_ball = distance_2d(ball.pos, our_goal) < distance_2d(
         car.pos, our_goal)
     backline_intersect = line_backline_intersect(
         self.info.my_goal.center[1], vec2(car.pos), vec2(car_to_ball))
     return in_front_of_ball and abs(backline_intersect) < 2000
Exemple #2
0
def should_dodge(agent):
    car = agent.info.my_car
    their_goal = agent.info.their_goal
    close_to_goal = distance_2d(car.pos, their_goal.center) < 4000
    aiming_for_goal = abs(
        line_backline_intersect(their_goal.center[1], vec2(car.pos),
                                vec2(car.forward()))) < 850
    bot_to_target = agent.info.ball.pos - car.pos
    local_bot_to_target = dot(bot_to_target, agent.info.my_car.theta)
    angle_front_to_target = math.atan2(local_bot_to_target[1],
                                       local_bot_to_target[0])
    close_to_ball = norm(vec2(bot_to_target)) < 850
    good_angle = math.radians(-10) < angle_front_to_target < math.radians(10)
    return close_to_ball and close_to_goal and aiming_for_goal and good_angle
Exemple #3
0
def shooting_target(agent):
    ball = agent.info.ball
    car = agent.info.my_car
    car_to_ball = ball.pos - car.pos
    backline_intersect = line_backline_intersect(
        agent.info.their_goal.center[1], vec2(car.pos), vec2(car_to_ball))
    if -500 < backline_intersect < 500:
        goal_to_ball = normalize(car.pos - ball.pos)
        error = cap(distance_2d(ball.pos, car.pos) / 1000, 0, 1)
    else:
        # Right of the ball
        if -500 > backline_intersect:
            target = agent.info.their_goal.corners[3] + vec3(400, 0, 0)
        # Left of the ball
        elif 500 < backline_intersect:
            target = agent.info.their_goal.corners[2] - vec3(400, 0, 0)
        goal_to_ball = normalize(ball.pos - target)
        goal_to_car = normalize(car.pos - target)
        difference = goal_to_ball - goal_to_car
        error = cap(abs(difference[0]) + abs(difference[1]), 1, 10)

    goal_to_ball_2d = vec2(goal_to_ball[0], goal_to_ball[1])
    test_vector_2d = dot(rotation(0.5 * math.pi), goal_to_ball_2d)
    test_vector = vec3(test_vector_2d[0], test_vector_2d[1], 0)

    distance = cap((40 + distance_2d(ball.pos, car.pos) * (error**2)) / 1.8, 0,
                   4000)
    location = ball.pos + vec3(
        (goal_to_ball[0] * distance), goal_to_ball[1] * distance, 0)

    # this adjusts the target based on the ball velocity perpendicular to the direction we're trying to hit it
    multiplier = cap(distance_2d(car.pos, location) / 1500, 0, 2)
    distance_modifier = cap(
        dot(test_vector, ball.vel) * multiplier, -1000, 1000)
    modified_vector = vec3(test_vector[0] * distance_modifier,
                           test_vector[1] * distance_modifier, 0)
    location += modified_vector

    # another target adjustment that applies if the ball is close to the wall
    extra = 3850 - abs(location[0])
    if extra < 0:
        location[0] = cap(location[0], -3850, 3850)
        location[1] = location[1] + (-sign(agent.team) * cap(extra, -800, 800))
    return location
Exemple #4
0
def can_dodge(agent, target):
    bot_to_target = target - agent.info.my_car.pos
    local_bot_to_target = dot(bot_to_target, agent.info.my_car.theta)
    angle_front_to_target = math.atan2(local_bot_to_target[1], local_bot_to_target[0])
    distance_bot_to_target = norm(vec2(bot_to_target))
    good_angle = math.radians(-10) < angle_front_to_target < math.radians(10)
    on_ground = agent.info.my_car.on_ground and agent.info.my_car.pos[2] < 100
    going_fast = velocity_2d(agent.info.my_car.vel) > 1250
    target_not_in_goal = not agent.info.my_goal.inside(target)
    return good_angle and distance_bot_to_target > 2000 and on_ground and going_fast and target_not_in_goal
Exemple #5
0
def distance_2d(a, b):
    return norm(vec2(a - b))
Exemple #6
0
def velocity_2d(vel):
    return norm(vec2(vel))
Exemple #7
0
    def step(self, dt):
        # direction of ball relative to center of car (where should we aim)
        # direction of ball relative to yaw of car (where should we aim verse where we are aiming)
        local_bot_to_ball = dot(self.ball.pos - self.car.pos, self.car.theta)
        angle_front_to_ball = math.atan2(local_bot_to_ball[1], local_bot_to_ball[0])
        # distance between bot and ball
        distance = distance_2d(self.car.pos, self.ball.pos)
        # direction of ball velocity relative to yaw of car (which way the ball is moving verse which way we are moving)
        if velocity_2d(self.ball.vel) < 1e-10:
            angle_car_forward_to_ball_vel = 0
        else:
            angle_car_forward_to_ball_vel = angle_between(z0(self.car.forward()), z0(self.ball.vel))
        # magnitude of ball_bot_angle (squared)
        ball_bot_diff = (self.ball.vel[0] ** 2 + self.ball.vel[1] ** 2) - (self.car.vel[0] ** 2 + self.car.vel[1] ** 2)
        # p is the distance between ball and car
        # i is the magnitude of the ball's velocity (squared) the i term would normally
        # be the integral of p over time, but the ball's velocity is essentially that number
        # d is the relative speed between ball and car
        # note that bouncing a ball is distinctly different than balancing something that doesnt bounce
        # p_s is the x component of the distance to the ball
        # d_s is the one frame change of p_s, that's why p_s has to be global

        # we modify distance and ball_bot_diff so that only the component along the car's path is counted
        # if the ball is too far to the left, we don't want the bot to think it has to drive forward
        # to catch it
        distance_y = math.fabs(distance * math.cos(angle_front_to_ball))
        distance_x = math.fabs(distance * math.sin(angle_front_to_ball))
        # ball moving forward WRT car yaw?
        forward = False
        if math.fabs(angle_car_forward_to_ball_vel) < math.radians(90):
            forward = True
        # first we give the distance values signs
        if forward:
            d = ball_bot_diff
            i = (self.ball.vel[0] ** 2 + self.ball.vel[1] ** 2)
        else:
            d = -ball_bot_diff
            i = -(self.ball.vel[0] ** 2 + self.ball.vel[1] ** 2)

        if math.fabs(math.degrees(angle_front_to_ball)) < 90:
            p = distance_y

        else:
            p = -1 * distance_y
        # this is the PID correction.  all of the callibration goes on right here
        # there is literature about how to set the variables but it doesn't work quite the same
        # because the car is only touching the ball (and interacting with the system) on bounces
        # we run the PID formula through tanh to give a value between -1 and 1 for steering input
        # if the ball is lower we have no velocity bias
        bias_v = 600000  # 600000

        # just the basic PID if the ball is too low
        if self.ball.pos[2] < 120:
            correction = np.tanh((20 * p + .0015 * i + .006 * d) / 500)
        # if the ball is on top of the car we use our bias (the bias is in velocity units squared)
        else:
            correction = np.tanh((20 * p + .0015 * (i - bias_v) + .006 * d) / 500)
        # makes sure we don't get value over .99 so we dont exceed maximum thrust
        self.controls.throttle = correction * .99
        # anything over .9 is boost
        if correction > .99:
            self.controls.boost = True
        else:
            self.controls.boost = False

        # this is the PID steering section
        # p_s is the x component of the distance to the ball (relative to the cars direction)
        # d_s is the on frame change in p_s

        # we use absolute value and then set the sign later
        d_s = math.fabs(self.p_s) - math.fabs(distance_x)
        self.p_s = math.fabs(distance_x)
        # give the values the correct sign
        if angle_front_to_ball < 0:
            self.p_s = -self.p_s
            d_s = -d_s
        # d_s is actually -d_s ...whoops
        d_s = -d_s
        max_bias = 35
        backline_intersect = line_backline_intersect(self.goal.center[1], vec2(self.car.pos),
                                                     vec2(self.car.forward()))
        if abs(backline_intersect) < 1000 or self.ball.pos[2] > 200:
            bias = 0
        # Right of the ball
        elif -850 > backline_intersect:
            bias = max_bias
        # Left of the ball
        elif 850 < backline_intersect:
            bias = -max_bias

        # the correction settings can be altered to change performance
        correction = np.tanh((100 * (self.p_s + bias) + 1500 * d_s) / 8000)
        # apply the correction
        self.controls.steer = correction
Exemple #8
0
 def get_controls(self):
     if self.step == "Steer" or self.step == "Dodge2":
         self.step = "Catching"
     if self.step == "Catching":
         target = get_bounce(self)
         if target is None:
             self.step = "Defending"
         else:
             self.catching.target_pos = target[0]
             self.catching.target_speed = (distance_2d(
                 self.info.my_car.pos, target[0]) + 50) / target[1]
             self.catching.step(self.FPS)
             self.controls = self.catching.controls
             ball = self.info.ball
             car = self.info.my_car
             if distance_2d(ball.pos,
                            car.pos) < 150 and 65 < abs(ball.pos[2] -
                                                        car.pos[2]) < 127:
                 self.step = "Dribbling"
                 self.dribble = Dribbling(self.info.my_car, self.info.ball,
                                          self.info.their_goal)
             if self.defending:
                 self.step = "Defending"
             if not self.info.my_car.on_ground:
                 self.step = "Recovery"
             ball = self.info.ball
             if abs(ball.vel[2]) < 100 and sign(
                     self.team) * ball.vel[1] < 0 and sign(
                         self.team) * ball.pos[1] < 0:
                 self.step = "Shooting"
     elif self.step == "Dribbling":
         self.dribble.step(self.FPS)
         self.controls = self.dribble.controls
         ball = self.info.ball
         car = self.info.my_car
         bot_to_opponent = self.info.opponents[0].pos - self.info.my_car.pos
         local_bot_to_target = dot(bot_to_opponent, self.info.my_car.theta)
         angle_front_to_target = math.atan2(local_bot_to_target[1],
                                            local_bot_to_target[0])
         opponent_is_near = norm(vec2(bot_to_opponent)) < 2000
         opponent_is_in_the_way = math.radians(
             -10) < angle_front_to_target < math.radians(10)
         if not (distance_2d(ball.pos, car.pos) < 150
                 and 65 < abs(ball.pos[2] - car.pos[2]) < 127):
             self.step = "Catching"
         if self.defending:
             self.step = "Defending"
         if opponent_is_near and opponent_is_in_the_way:
             self.step = "Dodge"
             self.dodge = AirDodge(self.info.my_car, 0.25,
                                   self.info.their_goal.center)
         if not self.info.my_car.on_ground:
             self.step = "Recovery"
     elif self.step == "Defending":
         defending(self)
     elif self.step == "Dodge":
         self.dodge.step(self.FPS)
         self.controls = self.dodge.controls
         self.controls.boost = 0
         if self.dodge.finished and self.info.my_car.on_ground:
             self.step = "Catching"
     elif self.step == "Recovery":
         self.recovery.step(self.FPS)
         self.controls = self.recovery.controls
         if self.info.my_car.on_ground:
             self.step = "Catching"
     elif self.step == "Shooting":
         shooting(self)