def reset(self): """ Description ----- Resets the PID input trajectory. """ self.u = [] if __name__ == "__main__": # Build RL Objects rl = ReinforceLearning(discount_factor=0.95, states_start=300, states_stop=340, states_interval=0.5, actions_start=-15, actions_stop=15, actions_interval=2.5, learning_rate=0.5, epsilon=0.2, doe=1.2, eval_period=30) # Building states for the problem, states will be the tracking errors states = np.linspace(-15, 25, 201) rl.user_states(list(states)) # Building actions for the problem, actions will be inputs of u2 actions = np.linspace(-12, 18, 121) rl.user_actions(actions) # Load Q, T, and NT matrices from previous training q = np.loadtxt("Q_Matrix.txt") t = np.loadtxt("T_Matrix.txt")
----- Resets the PID input trajectory. """ self.u = [] if __name__ == "__main__": # Build RL Objects rl = ReinforceLearning(discount_factor=0.95, states_start=300, states_stop=340, states_interval=0.5, actions_start=-15, actions_stop=15, actions_interval=2.5, learning_rate=0.5, epsilon=0.2, doe=1.2, eval_period=30) # Building states for the problem, states will be the tracking errors states = [] rl.x1 = np.linspace(-10, 10, 21) rl.x2 = np.linspace(-10, 10, 21) for x1 in rl.x1: for x2 in rl.x2: states.append([x1, x2])
----- Resets the PID input trajectory. """ self.u = [] if __name__ == "__main__": # Build RL Objects rl = ReinforceLearning(discount_factor=0.95, states_start=300, states_stop=340, states_interval=0.5, actions_start=-15, actions_stop=15, actions_interval=2.5, learning_rate=0.5, epsilon=0.2, doe=1.2, eval_period=60) # Building states for the problem, states will be the tracking errors states = [] rl.x1 = np.linspace(-15, 15, 121) rl.x2 = np.linspace(-5, 5, 41) for i in rl.x1: for j in rl.x2: states.append([i, j])