Exemple #1
0
    fnamek = os.path.join(path_WOS, "WebOfScience/WOS5736/Y.txt")
    with open(fname, encoding="utf-8") as f:
        content = f.readlines()
        content = [txt.text_cleaner(x) for x in content]
    with open(fnamek) as fk:
        contentk = fk.readlines()
    contentk = [x.strip() for x in contentk]
    Label = np.matrix(contentk, dtype=int)
    Label = np.transpose(Label)
    np.random.seed(7)
    print(Label.shape)
    X_train, X_test, y_train, y_test = train_test_split(content,
                                                        Label,
                                                        test_size=0.2,
                                                        random_state=42)

    batch_size = 100
    sparse_categorical = 0
    n_epochs = [100, 100, 100]  ## DNN--RNN-CNN
    Random_Deep = [3, 3, 3]  ## DNN--RNN-CNN

    RMDL.Text_Classification(X_train,
                             y_train,
                             X_test,
                             y_test,
                             batch_size=batch_size,
                             sparse_categorical=True,
                             random_deep=Random_Deep,
                             epochs=n_epochs,
                             no_of_classes=12)
Exemple #2
0
    print(y_test)
    word_index = imdb.get_word_index()
    index_word = {v: k for k, v in word_index.items()}
    X_train = [
        txt.text_cleaner(' '.join(index_word.get(w) for w in x))
        for x in X_train
    ]
    X_test = [
        txt.text_cleaner(' '.join(index_word.get(w) for w in x))
        for x in X_test
    ]
    X_train = np.array(X_train)
    X_train = np.array(X_train).ravel()
    print(X_train.shape)
    X_test = np.array(X_test)
    X_test = np.array(X_test).ravel()

    batch_size = 100
    sparse_categorical = 0
    n_epochs = [500, 500, 500]  ## DNN--RNN-CNN
    Random_Deep = [3, 3, 3]  ## DNN--RNN-CNN

    RMDL.Text_Classification(X_train,
                             y_train,
                             X_test,
                             y_test,
                             batch_size=batch_size,
                             sparse_categorical=sparse_categorical,
                             random_deep=Random_Deep,
                             epochs=n_epochs)
Exemple #3
0
test_labels = labels[split_data:]


#batch_size should not be very small neither too big
batch_size = 2


sparse_categorical = 0

#epoch for DNN , RNN and CNN
n_epochs = [5, 5, 5]  ## DNN--RNN-CNN
Random_Deep = [3, 3, 3]  ## DNN--RNN-CNN
no_of_classes = 2
RMDL.Text_Classification(np.array(train_sentences), np.array(train_labels), np.array(test_sentences),
                         np.array(test_labels),
                         batch_size=batch_size,
                         sparse_categorical=sparse_categorical,
                         random_deep=Random_Deep,
                         epochs=n_epochs, no_of_classes=2)


#output
#
# Found 129 unique tokens.
# (10, 500)
# Total 400000 word vectors.
# 2
# DNN 0
# <keras.optimizers.Adagrad object at 0x7f00801bbb70>
# Train on 8 samples, validate on 2 samples
# Epoch 1/5
#  - 0s - loss: 0.8781 - acc: 0.5000 - val_loss: 0.1762 - val_acc: 1.0000
Exemple #4
0
    with open(fnamek) as fk:
        contentk = fk.readlines()
    contentk = [x.strip() for x in contentk]
    Label = np.matrix(contentk, dtype=int)
    Label = np.transpose(Label)
    np.random.seed(7)
    print(Label.shape)
    X_train, X_test, y_train, y_test = train_test_split(content,
                                                        Label,
                                                        test_size=0.2,
                                                        random_state=0,
                                                        shuffle=False)

    batch_size = 128
    n_epochs = [0, 2, 2]  ## DNN--RNN-CNN
    Random_Deep = [0, 1, 1]  ## DNN--RNN-CNN

    RMDL.Text_Classification(X_train,
                             y_train,
                             X_test,
                             y_test,
                             batch_size=batch_size,
                             sparse_categorical=True,
                             random_deep=Random_Deep,
                             epochs=n_epochs,
                             GloVe_dir="../dataset/",
                             GloVe_file="glove.6B.300d.txt",
                             EMBEDDING_DIM=300,
                             MAX_SEQUENCE_LENGTH=100,
                             MAX_NB_WORDS=50000)