# globals, and aliases
from ROOT import gPad, gStyle, gSystem, kRed, kBlue, kAzure, kGreen, kBlack
const = RooRealConstant.value

# setup
gStyle.SetOptStat('nemrou')
canvas = TCanvas('canvas', 'canvas', 800, 600)
canvas.Print('{}['.format(plotfile))

# read workspace
ffile = TFile.Open(rfile, 'read')
workspace = ffile.Get('workspace')

pdfs = RooArgList(workspace.allPdfs())
for i in range(pdfs.getSize()):
    name = pdfs[i].GetName()
    if name.find(mode) >= 0:
        mykpdf = pdfs[i]
assert(mykpdf)

## variables
time = RooRealVar('time', 'Time [ps]', 0.2, 15.0)
time.setBins(bins)
time.setBins(bins*3, 'cache')

kfactor = workspace.var('kfactorVar')
kfactor.setRange(0.85, 1.05)
gamma = RooRealVar('gamma', 'gamma', 0.661, 0., 3.)
kgamma = RooProduct('kgamma', 'kgamma', RooArgList(gamma, kfactor))
dGamma = RooRealVar('dGamma', 'dGamma', -0.106, -3., 3.)
usig2 = 0.
totalYield = 0.
sigYield = 0.
sigErrs = {}

sigYieldFilename = 'last_H%i_%s_%iJets_signalYield.txt' % (opts.mH, 
                                                           modeString, opts.Nj)
sigYieldsFile = open(sigYieldFilename, 'w')

WpJNonPoissonError = 0

print
print '-------------------------------'
print 'Yields in signal box'
print '-------------------------------'
for i in range(0, yields.getSize()):
    theName = yields.at(i).GetName()
    if theName[0] == 'n':
        totalYield += yields.at(i).getVal()
        theIntegral = 1.
        if (theName == 'nDiboson'):
            theIntegral = dibosonInt.getVal()/dibosonFullInt.getVal()
        elif (theName == 'nWjets'):
            theIntegral = WpJInt.getVal()/WpJFullInt.getVal()
            if (yields.at(i).getError()**2 > yields.at(i).getVal()):
                WpJNonPoissonError = sqrt(yields.at(i).getError()**2 - \
                                              yields.at(i).getVal())
            else:
                WpJNonPoissonError = 0.
        elif (theName == 'nTTbar'):
            theIntegral = ttbarInt.getVal()/ttbarFullInt.getVal()
def findOnePe(hist, ws, name='x', Npe = 1):
    fitPed(hist, ws, name)
    x = ws.var(name)

    ped = ws.pdf('ped')
    pedWidth = ws.var('pedWidth')

    pdfs = RooArgList(ped)
    pdfList = []

    fped = RooRealVar('fped', 'f_{ped}', 0.8, 0., 1.)
    fractions = RooArgList(fped)
    fList = []
    peList = []

    peMean = RooRealVar('peMean', 'mean_{pe}', 6., 0., 20.)
    peWidth = RooRealVar('peWidth', 'width_{pe}', pedWidth.getVal(), 0., 10.)

    for i in range(0, Npe):
        pem = RooFormulaVar('pem{0}'.format(i+1), '@0+{0}*@1'.format(i+1),
                            RooArgList(ws.var('pedMean'), peMean))
        peList.append(pem)
        npepdf = RooGaussian('pe{0}pdf'.format(i+1), 'pe{0}pdf'.format(i+1),
                             x, pem, pedWidth)
        pdfs.add(npepdf)
        pdfList.append(npepdf)

        fnpe = RooRealVar('fpe{0}'.format(i+1), 'fpe{0}'.format(i+1),
                          0.5, -0.1, 1.0)
        fractions.add(fnpe)
        fList.append(fnpe)

    #bgMean = RooRealVar("bgMean", "bgMean", 6.0, x.getMin(), x.getMax())
    bgScale = RooRealVar("bgScale", "bgScale", 0.5, -1.0, Npe + 1.0)
    bgMean = RooFormulaVar("bgMean", "@1+@0*@2",
                           RooArgList(peMean, ws.var('pedMean'), bgScale))
    bgWidthL = RooRealVar("bgWidthL", "bgWidthL", pedWidth.getVal()*2,
                          0., 25.)
    bgWidthR = RooRealVar("bgWidthR", "bgWidthR", pedWidth.getVal()*7,
                          0., 25.)

    bgGauss = RooBifurGauss("bgGauss", "bgGauss", x, bgMean,
                            bgWidthR, bgWidthR)

    if (Npe > 1):
        pdfs.add(bgGauss)
    else:
        fractions.remove(fractions.at(fractions.getSize()-1))

##     pem = RooFormulaVar('pem', '@0+@1', RooArgList(peMean, ws.var('pedMean')))
##     firstPe = RooGaussian('firstPe', 'firstPe', x, pem, peWidth)

##     pdfs.Print("v")
##     fractions.Print("v")
    pedPlusOne = RooAddPdf('pedPlusOne', 'pedPlusOne', pdfs, fractions, True)

    ## pedWidth = ped.GetParameter(2)
    ## pedMean = ped.GetParameter(1)
    ## pedA = ped.GetParameter(0)
    
    secondMax = hist.GetMaximumBin() + 1
    goingDown = True
    maxVal = hist.GetBinContent(secondMax)
    foundMax = False
    while (not foundMax) and (secondMax < hist.GetNbinsX()):
        tmpVal = hist.GetBinContent(secondMax+1)
        if (tmpVal < maxVal):
            if not goingDown:
                foundMax = True
            else:
                goingDown = True
                maxVal = tmpVal
                secondMax += 1
        elif (tmpVal > maxVal):
            goingDown = False
            maxVal = tmpVal
            secondMax += 1
        else:
            maxVal = tmpVal
            secondMax += 1

    secondMaxx = hist.GetBinCenter(secondMax)
    print 'found 2nd maximum in bin',secondMax,'value',secondMaxx

##     peMean.setVal(secondMaxx)
##     bgMean.setVal(secondMaxx*0.6)
    x.setRange('pedPlus_fit', x.getMin(), ws.var('pedMean').getVal()+pedWidth.getVal()*6.*(Npe+0))

    pedPlusOne.fitTo(ws.data('ds'), RooFit.Minos(False),
                     RooFit.Range('pedPlus_fit'),
                     RooFit.PrintLevel(1))

    getattr(ws, 'import')(pedPlusOne)
    parlist = fitresult.floatParsFinal()
    cmatrix = fitresult.covarianceMatrix()

    veclist = RooArgList()
    for i in range(parlist.getSize()):
        name = "%s_%d" % (parlist[i].GetName(), i)
        veclist.add(parlist[i].clone(name))

    multigauss = RooMultiVarGaussian("multigauss", "multigauss", veclist, parlist, cmatrix)
    dset = multigauss.generate(RooArgSet(veclist), 1000)

    fns = []
    for entry in range(dset.numEntries()):
        vecset = dset.get(entry)
        veclist = RooArgList(vecset)
        for pars in range(veclist.getSize()):
            acceptance.SetParameter(pars, veclist[pars].getVal())
        fns += [acceptance.Clone("%s_%d" % (acceptance.GetName(), entry))]

    avgfn = BinnedAvgFunction(fns, xbincs)
    avgfn.calculate()
    accfns += [avgfn.get_avg_fn()]
    accfnerrs += [avgfn.get_avg_fn_var()]


means = numpy.zeros(nbins, dtype=float)
varis = numpy.zeros(nbins, dtype=float)
for ibin in range(nbins):
    means[ibin] = accfns[0][ibin] / accfns[1][ibin]
    varis[ibin] = accfnerrs[0][ibin] + accfnerrs[1][ibin]
usig2 = 0.
totalYield = 0.
sigYield = 0.
sigErrs = {}

sigYieldFilename = 'last_H%i_%s_%iJets_signalYield.txt' % (opts.mH, 
                                                           modeString, opts.Nj)
sigYieldsFile = open(sigYieldFilename, 'w')

WpJNonPoissonError = 0

print
print '-------------------------------'
print 'Yields in signal box'
print '-------------------------------'
for i in range(0, yields.getSize()):
    theName = yields.at(i).GetName()
    if theName[0] == 'n':
        totalYield += yields.at(i).getVal()
        theIntegral = 1.
        if (theName == 'nDiboson'):
            theIntegral = dibosonInt.getVal()/dibosonFullInt.getVal()
        elif (theName == 'nWjets'):
            theIntegral = WpJInt.getVal()/WpJFullInt.getVal()
            if (yields.at(i).getError()**2 > yields.at(i).getVal()):
                WpJNonPoissonError = sqrt(yields.at(i).getError()**2 - \
                                              yields.at(i).getVal())
            else:
                WpJNonPoissonError = 0.
        elif (theName == 'nTTbar'):
            theIntegral = ttbarInt.getVal()/ttbarFullInt.getVal()
def accbuilder(time, knots, coeffs):
    # build acceptance function
    from copy import deepcopy
    myknots = deepcopy(knots)
    mycoeffs = deepcopy(coeffs)
    from ROOT import (RooBinning, RooArgList, RooPolyVar,
            RooCubicSplineFun)
    if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))):
        raise ValueError('ERROR: Spline knot position list and/or coefficient'
                'list mismatch')
    # create the knot binning
    knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(), 'knotbinning'))
    for v in myknots:
        knotbinning.addBoundary(v)
    knotbinning.removeBoundary(time.getMin())
    knotbinning.removeBoundary(time.getMax())
    knotbinning.removeBoundary(time.getMin())
    knotbinning.removeBoundary(time.getMax())
    oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax()
    time.setBinning(knotbinning, 'knotbinning')
    time.setBinning(oldbinning)
    time.setRange(lo, hi)
    del knotbinning
    del oldbinning
    del lo
    del hi
    # create the knot coefficients
    coefflist = RooArgList()
    i = 0
    for v in mycoeffs:
        coefflist.add(WS(ws, RooRealVar('SplineAccCoeff%u' % i,
            'SplineAccCoeff%u' % i, v)))
        i = i + 1
    del mycoeffs
    coefflist.add(one)
    i = i + 1
    myknots.append(time.getMax())
    myknots.reverse()
    fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1])
    lastmycoeffs = RooArgList(
            WS(ws, RooConstVar('SplineAccCoeff%u_coeff0' % i,
                'SplineAccCoeff%u_coeff0' % i, 1. - fudge)),
            WS(ws, RooConstVar('SplineAccCoeff%u_coeff1' % i,
                'SplineAccCoeff%u_coeff1' % i, fudge)))
    del myknots
    coefflist.add(WS(ws, RooPolyVar(
        'SplineAccCoeff%u' % i, 'SplineAccCoeff%u' % i,
        coefflist.at(coefflist.getSize() - 2), lastmycoeffs)))
    del i
    # create the spline itself
    tacc = WS(ws, RooCubicSplineFun('SplineAcceptance', 'SplineAcceptance', time,
        'knotbinning', coefflist))
    del lastmycoeffs
    # make sure the acceptance is <= 1 for generation
    m = max([coefflist.at(j).getVal() for j in
        xrange(0, coefflist.getSize())])
    from ROOT import RooProduct
    c = WS(ws, RooConstVar('SplineAccNormCoeff', 'SplineAccNormCoeff', 0.99 / m))
    tacc_norm = WS(ws, RooProduct('SplineAcceptanceNormalised',
        'SplineAcceptanceNormalised', RooArgList(tacc, c)))
    del c
    del m
    del coefflist
    return tacc, tacc_norm
Exemple #7
0
def findOnePe(hist, ws, name='x', Npe=1):
    fitPed(hist, ws, name)
    x = ws.var(name)

    ped = ws.pdf('ped')
    pedWidth = ws.var('pedWidth')

    pdfs = RooArgList(ped)
    pdfList = []

    fped = RooRealVar('fped', 'f_{ped}', 0.8, 0., 1.)
    fractions = RooArgList(fped)
    fList = []
    peList = []

    peMean = RooRealVar('peMean', 'mean_{pe}', 6., 0., 20.)
    peWidth = RooRealVar('peWidth', 'width_{pe}', pedWidth.getVal(), 0., 10.)

    for i in range(0, Npe):
        pem = RooFormulaVar('pem{0}'.format(i + 1), '@0+{0}*@1'.format(i + 1),
                            RooArgList(ws.var('pedMean'), peMean))
        peList.append(pem)
        npepdf = RooGaussian('pe{0}pdf'.format(i + 1),
                             'pe{0}pdf'.format(i + 1), x, pem, pedWidth)
        pdfs.add(npepdf)
        pdfList.append(npepdf)

        fnpe = RooRealVar('fpe{0}'.format(i + 1), 'fpe{0}'.format(i + 1), 0.5,
                          -0.1, 1.0)
        fractions.add(fnpe)
        fList.append(fnpe)

    #bgMean = RooRealVar("bgMean", "bgMean", 6.0, x.getMin(), x.getMax())
    bgScale = RooRealVar("bgScale", "bgScale", 0.5, -1.0, Npe + 1.0)
    bgMean = RooFormulaVar("bgMean", "@1+@0*@2",
                           RooArgList(peMean, ws.var('pedMean'), bgScale))
    bgWidthL = RooRealVar("bgWidthL", "bgWidthL",
                          pedWidth.getVal() * 2, 0., 25.)
    bgWidthR = RooRealVar("bgWidthR", "bgWidthR",
                          pedWidth.getVal() * 7, 0., 25.)

    bgGauss = RooBifurGauss("bgGauss", "bgGauss", x, bgMean, bgWidthR,
                            bgWidthR)

    if (Npe > 1):
        pdfs.add(bgGauss)
    else:
        fractions.remove(fractions.at(fractions.getSize() - 1))


##     pem = RooFormulaVar('pem', '@0+@1', RooArgList(peMean, ws.var('pedMean')))
##     firstPe = RooGaussian('firstPe', 'firstPe', x, pem, peWidth)

##     pdfs.Print("v")
##     fractions.Print("v")
    pedPlusOne = RooAddPdf('pedPlusOne', 'pedPlusOne', pdfs, fractions, True)

    ## pedWidth = ped.GetParameter(2)
    ## pedMean = ped.GetParameter(1)
    ## pedA = ped.GetParameter(0)

    secondMax = hist.GetMaximumBin() + 1
    goingDown = True
    maxVal = hist.GetBinContent(secondMax)
    foundMax = False
    while (not foundMax) and (secondMax < hist.GetNbinsX()):
        tmpVal = hist.GetBinContent(secondMax + 1)
        if (tmpVal < maxVal):
            if not goingDown:
                foundMax = True
            else:
                goingDown = True
                maxVal = tmpVal
                secondMax += 1
        elif (tmpVal > maxVal):
            goingDown = False
            maxVal = tmpVal
            secondMax += 1
        else:
            maxVal = tmpVal
            secondMax += 1

    secondMaxx = hist.GetBinCenter(secondMax)
    print 'found 2nd maximum in bin', secondMax, 'value', secondMaxx

    ##     peMean.setVal(secondMaxx)
    ##     bgMean.setVal(secondMaxx*0.6)
    x.setRange('pedPlus_fit', x.getMin(),
               ws.var('pedMean').getVal() + pedWidth.getVal() * 6. * (Npe + 0))

    pedPlusOne.fitTo(ws.data('ds'), RooFit.Minos(False),
                     RooFit.Range('pedPlus_fit'), RooFit.PrintLevel(1))

    getattr(ws, 'import')(pedPlusOne)
from ROOT import gPad, gStyle, kRed, kBlue, kAzure, kGreen, kBlack

gStyle.SetOptStat('nemrou')
canvas = TCanvas('canvas', 'canvas', 800, 600)
canvas.Print('{}['.format(plotfile))

ffile = TFile.Open(rfile, 'read')

if ifpdf:
    workspace = ffile.Get('workspace')

    kfactor = workspace.var('kfactorVar')
    kfactor.setRange(0.9, 1.1)
    pdfs = RooArgList(workspace.allPdfs())

    for i in range(pdfs.getSize()):
        fr = kfactor.frame()
        pdfs[i].plotOn(fr, RooFit.LineColor(kBlack), RooFit.FillColor(kAzure+1),
                       RooFit.DrawOption('lf')) # FIXME: doesn't draw the line!'
        fr.Draw()
        canvas.Print(plotfile)
else:
    modes = {}
    klist = ffile.GetListOfKeys()
    for item in klist:
        name = item.GetName()
        if not name.startswith('mBresn'):
            print 'MSG: Skipping, unknown object: %s' % name
            continue # ntuples are named mBresn_*
        sample = name.split('_')
        modes[sample[1]] = modes.get(sample[1],[]) + [item] # up and down for each mode
Exemple #9
0
# knot coefficients
coefflist = RooArgList()
for i, v in enumerate(spline_coeffs):
    coefflist.add(const(v))
i = len(spline_coeffs)
coefflist.add(one)
spline_knots.append(time.getMax())
spline_knots.reverse()
fudge = (spline_knots[0] - spline_knots[1]) / (spline_knots[2] -
                                               spline_knots[1])
lastmycoeffs = RooArgList()
lastmycoeffs.add(const(1. - fudge))
lastmycoeffs.add(const(fudge))
polyvar = RooPolyVar('{}_SplineAccCoeff{}'.format(mode, i), '',
                     coefflist.at(coefflist.getSize() - 2), lastmycoeffs)
coefflist.add(polyvar)
del i

# create the spline itself
tacc = RooCubicSplineFun('{}_SplineAcceptance'.format(mode), '', time,
                         '{}_knotbinning'.format(mode), coefflist)
#del lastmycoeffs, coefflist

from ROOT import TCanvas, TLine

#tacc.DrawClass();

aCanvas = canvas

import sys
Exemple #10
0
    parlist = fitresult.floatParsFinal()
    cmatrix = fitresult.covarianceMatrix()

    veclist = RooArgList()
    for i in range(parlist.getSize()):
        name = '%s_%d' % (parlist[i].GetName(), i)
        veclist.add(parlist[i].clone(name))

    multigauss = RooMultiVarGaussian('multigauss', 'multigauss', veclist, parlist, cmatrix)
    dset = multigauss.generate(RooArgSet(veclist), 1000)

    fns = []
    for entry in range(dset.numEntries()):
        vecset = dset.get(entry)
        veclist = RooArgList(vecset)
        for pars in range(veclist.getSize()):
            acceptance.SetParameter(pars, veclist[pars].getVal())
        fns += [acceptance.Clone('%s_%d' % (acceptance.GetName(), entry))]

    avgfn = BinnedAvgFunction(fns, xbincs)
    avgfn.calculate()
    accfns += [avgfn.get_avg_fn()]
    accfnerrs += [avgfn.get_avg_fn_var()]


means = numpy.zeros(nbins, dtype=float)
varis = numpy.zeros(nbins, dtype=float)
for ibin in range(nbins):
    means[ibin] = accfns[0][ibin] / accfns[1][ibin]
    varis[ibin] = accfnerrs[0][ibin] + accfnerrs[1][ibin]
    inFile.ls()
    #s = raw_input("Press Enter to continue");
    theTH1DHist = TH1F()
    inFile.GetObject("etaHist", theTH1DHist)
    #rooRealVarList += [RooRealVar('x','x',0.0,1.0)];
    x = RooRealVar('x', 'x', 0.0, 1.0)
    xRegions, x = divideEtaTH1Ds(theTH1DHist, x, 5, fNum)
    fNum += 1
    #xList += [RooAbsReal(x)]
    xRegionsList.add(xRegions.clone(xRegions.GetName() + "_clone"))
    #etasetDataset.add();

import sys
#sys.exit(0);

for i in range(xRegionsList.getSize()):
    xRegionsList.at(0).Print()
    #.Print();#writeToStream(ROOT.cout,True);

print "\n\nNOCRASH2\n\n"

from ROOT import TFile
import time

os.chdir(os.environ['B2DXFITTERSROOT'] + '/tutorial')

f = TFile('xRegionsList_%f.root' % time.time(), 'recreate')
f.WriteTObject(xRegionsList, 'xRegionsList_%f' % time.time())
f.Close()
del f
Exemple #12
0
def buildBDecayTimePdf(
    config,                             # configuration dictionary
    name,                               # 'Signal', 'DsPi', ...
    ws,                                 # RooWorkspace into which to put the PDF
    time, timeerr, qt, qf, mistag, tageff,      # potential observables
    Gamma, DeltaGamma, DeltaM,          # decay parameters
    C, D, Dbar, S, Sbar,                # CP parameters
    timeresmodel = None,                # decay time resolution model
    acceptance = None,                  # acceptance function
    timeerrpdf = None,                  # pdf for per event time error
    mistagpdf = None,                   # pdf for per event mistag
    mistagobs = None,                   # real mistag observable
    kfactorpdf = None,                  # distribution k factor smearing
    kvar = None,                        # variable k which to integrate out
    aprod = None,                       # production asymmetry
    adet = None,                        # detection asymmetry
    atageff = None                      # asymmetry in tagging efficiency
    ):
    """
    build a B decay time pdf

    parameters:
    -----------
    config          -- config dictionary
    name            -- name prefix for newly created objects
    ws              -- workspace into which to import created objects
    time            -- time observable
    timeerr         -- time error (constant for average, or per-event obs.)
    qt              -- tagging decision (RooCategory)
    qf              -- final state charge (RooCategory)
    mistag          -- mistag (either average, or calibrated omega(eta))
    tageff          -- tagging efficiency
    Gamma           -- width of decay (1/lifetime)
    DeltaGamma      -- width difference
    DeltaM          -- mass difference
    C               -- term in front of cos in RooBDecay
    D               -- term in front of sinh in RooBDecay (f final state)
    Dbar            -- term in front of sinh in RooBDecay (fbar final state)
    S               -- term in front of sin in RooBDecay (f final state)
    Sbar            -- term in front of sin in RooBDecay (fbar final state)
    timeresmodel    -- decay time resolution model (or None for delta fn)
    acceptance      -- acceptance (or None for flat efficiency(decay time))
    timeerrpdf      -- decay time error distribution (or None for average)
    mistagpdf       -- per event mistag distribution(s) (or None for average)
    mistagobs       -- (uncalibrated) per event mistag observable (or None)
    kfactorpdf      -- k factor distribution (None for no k-factor correction)
    kvar            -- k factor variable (None for no k-factor correction)
    aprod           -- production asymmetry (None for zero asymmetry)
    adet            -- detection asymmetry (None for zero asymmetry)
    atageff         -- tagging eff. asymmetry (None, or list, 1 per tagger/cat.)

    returns:
    --------
    a time pdf built according to specification

    This routine is a rather flexible beast and can accomodate a multitude of
    use cases:
    - ideal, average or per-event decay time resolution (pdf needed for
      per-event case)
    - ideal, average, per category, or per-event mistag:
      * ideal: mistag = zero, mistagpdf = mistagobs = None
      * average: mistag = RooRealVar/RooConstVar, mistagpdf = mistagobs = None
      * per category: qt = -Ncat, ... , 0, 1, ..., Ncat, mistag = RooArgList
        of per-category average mistags (1, ..., Ncat),i
        mistagpdf = mistagobs = None (can be used for calibrations!)
      * per event: qt = -1, 0, +1, mistag = calibrated mistag omega(eta),
        mistagpdf = P(eta), mistagobs = eta
      * per event, mutually exclusive taggers: like per category, but
        mistagpdf becomes a list of pdfs as well
      * one can have as many tagging asymmetries as there are
        categories/mutually exclusive taggers (for a single one, just pass the
        RooRealVar, else a RooArgList of RooRealVars)
      * if the calibration needs to differ between B and Bbar, mistag can also
        be a list of two calibrations "[ calB, calBbar ]", or a list of
        RooArgLists (one per category/mutually exclusive tagger)
    - optionally, a k-factor correction can be applied for partially
      reconstructed or misidentified modes

    See the classes RooBDecay (in RooFit), DecRateCoeff (B2DXFitters) and
    RooKResModel (also B2DXFitters) for details on the precise meaning and
    definition of these variables.

    relevant config dictionary keys:
    --------------------------------
    'Debug':
        print all arguments to buildBDecayTimePdf before doing anything -
        useful to see what "really goes in" when it doesn't do what it
        should...
    'UseKFactor':
        if True, apply the k-factor correction, if False, k-factor correction
        can be disabled globally (useful for fast fitback look toys,
        systematic studies, etc.)
    'ParameteriseIntegral':
        if True, save a huge amount of CPU by parametrising the resolutition
        model integral and its convolutions with the decay time pdf as a
        function of (per-event) decay time; see parameteriseResModelIntegrals
        for details

    For more information on how various bits affect the pdf built, see also
    the documentation for the following helper routines:
    applyBinnedAcceptance, applyKFactorSmearing, applyDecayTimeErrPdf,
    applyUnbinnedAcceptance, parameteriseResModelIntegrals
    """
    # Look in LHCb-INT-2011-051 for the conventions used
    from ROOT import ( RooConstVar, RooProduct, RooTruthModel, RooGaussModel,
        Inverse, RooBDecay, RooProdPdf, RooArgSet, DecRateCoeff,
        RooArgList )
    
    if config['Debug']:
        print 72 * '#'
        kwargs = {
                'config': config,
                'name': name,
                'ws': ws,
                'time': time,
                'timeerr': timeerr,
                'qt': qt,
                'qf': qf,
                'mistag': mistag,
                'tageff': tageff,
                'Gamma': Gamma,
                'DeltaGamma': DeltaGamma,
                'DeltaM': DeltaM,
                'C': C, 'D': D, 'Dbar':Dbar, 'S': S, 'Sbar': Sbar,
                'timeresmodel': timeresmodel,
                'acceptance': acceptance,
                'timeerrpdf': timeerrpdf,
                'mistagpdf': mistagpdf,
                'mistagobs': mistagobs,
                'kfactorpdf': kfactorpdf,
                'kvar': kvar,
                'aprod': aprod,
                'adet': adet,
                'atageff': atageff
                }
        print 'buildBDecayTimePdf('
        for kw in kwargs:
            print '\t%s = %s' % (kw, kwargs[kw])
        print '\t)'
        print 72 * '#'

    # constants used
    zero = WS(ws, RooConstVar('zero', 'zero', 0.))
    one = WS(ws, RooConstVar('one', 'one', 1.))

    if None == aprod: aprod = zero
    if None == adet: adet = zero
    if None == atageff: atageff = [ zero ]
    if None == mistagpdf:
        mistagobs = None
    else: # None != mistagpdf
        if None == mistagobs:
            raise NameError('mistag pdf set, but no mistag observable given')

    # if no time resolution model is set, fake one
    if timeresmodel == None:
        timeresmodel = WS(ws, RooTruthModel('%s_TimeResModel' % name,
            '%s time resolution model' % name, time))
    elif timeresmodel == 'Gaussian':
        timeresmodel = WS(ws, RooGaussModel('%s_TimeResModel' % name,
            '%s time resolution model' % name, time, zero, timeerr))

    # apply acceptance (if needed)
    timeresmodel = applyBinnedAcceptance(
            config, ws, time, timeresmodel, acceptance)
    if config['UseKFactor']:
        timeresmodel = applyKFactorSmearing(config, ws, time, timeresmodel,
                kvar, kfactorpdf, [ Gamma, DeltaGamma, DeltaM ])
    if config['ParameteriseIntegral']:
        parameteriseResModelIntegrals(config, ws, timeerrpdf, timeerr, timeresmodel)

    # if there is a per-event mistag distributions and we need to do things
    # correctly
    if None != mistagpdf:
        otherargs = [ mistagobs, RooArgList(*mistagpdf), RooArgList(*tageff) ]
    else:
        otherargs = [ RooArgList(*tageff) ]
    bcalib = RooArgList()
    bbarcalib = RooArgList()
    for t in mistag:
        bcalib.add(t[0])
        if len(t) > 1:
            bbarcalib.add(t[1])
    otherargs.append(bcalib)
    if (bbarcalib.getSize()):
        otherargs.append(bbarcalib)
    otherargs += [ aprod, adet, RooArgList(*atageff) ]
    flag = 0
    if 'Bs2DsK' == name and 'CADDADS' == config['Bs2DsKCPObs']:
        flag = DecRateCoeff.AvgDelta
    # build coefficients to go into RooBDecay
    cosh = WS(ws, DecRateCoeff('%s_cosh' % name, '%s_cosh' % name,
        DecRateCoeff.CPEven, qf, qt, one, one, *otherargs))
    sinh = WS(ws, DecRateCoeff('%s_sinh' % name, '%s_sinh' % name,
        flag | DecRateCoeff.CPEven, qf, qt, D, Dbar, *otherargs))
    cos = WS(ws, DecRateCoeff('%s_cos' % name, '%s_cos' % name,
        DecRateCoeff.CPOdd, qf, qt, C, C, *otherargs))
    sin = WS(ws, DecRateCoeff('%s_sin' % name, '%s_sin' % name,
        flag | DecRateCoeff.CPOdd | DecRateCoeff.Minus,
        qf, qt, S, Sbar, *otherargs))
    del flag
    del otherargs

    # build (raw) time pdf
    tau = WS(ws, Inverse('%sTau' % Gamma.GetName(),
        '%s #tau' % Gamma.GetName(), Gamma))
    retVal = WS(ws, RooBDecay(
        '%s_RawTimePdf' % name, '%s raw time pdf' % name,
        time, tau, DeltaGamma,  cosh, sinh, cos, sin,
        DeltaM, timeresmodel, RooBDecay.SingleSided))

    retVal = applyDecayTimeErrPdf(config, name, ws, time, timeerr, qt, qf,
            mistagobs, retVal, timeerrpdf, mistagpdf)
    
    # if we do not bin the acceptance, we apply it here
    retVal = applyUnbinnedAcceptance(config, name, ws, retVal, acceptance)

    retVal.SetNameTitle('%s_TimePdf' % name, '%s full time pdf' % name)

    # return the copy of retVal which is inside the workspace
    return WS(ws, retVal)
Exemple #13
0
def readDataSet(
    config,             # configuration dictionary
    ws,                 # workspace to which to add data set
    observables,        # observables
    rangeName = None    # name of range to clip dataset to
    ):
    """
    read data set from given Ntuple (or a RooDataSet inside a workspace) into
    a RooDataSet

    arguments:
    config      -- configuration dictionary (see below for relevant keys)
    ws          -- workspace into which to import data from tuple
    observables -- RooArgSet containing the observables to be read
    rangeName   -- optional, can be the name of a range of one observable, if
                   the data read from the tuple needs to be explicitly clipped
                   to that range for some reason

    the routine returns the data set that has been read in and stored inside
    ws.

    relevant configuration dictionary keys:
    'DataFileName' -- file name of data file from which to read ntuple or data
                      set
    'DataSetNames' -- name (TTree or RooDataSet) of the data set to be read;
                      more than one can be given in a dictionary, providing a
                      mapping between the sample name and the data set to be
                      read (see below for an explanation)
    'DataWorkSpaceName'
                   -- name of workspace to read data from (if any - leave None
                      for reading tuples)
    'DataSetCuts' --  cuts to apply to data sets on import - anything that
                      RooDataSet.reduce will understand is permissible here
                      (set to None to not apply any cuts on import)
    'DataSetVarNameMapping'
                   -- mapping from variable names in set of observables to
                      what these variable names are called in the
                      tuple/workspace to be imported

    "special" observable names:
    The routine treats some variable names special on import based on their
    likely meaning:
    'weight' -- this variable name must be used to read in (s)weighted events
    'qf'     -- final state charge (e.g. +1 for K+ vs -1 for K-); only the
                sign is important here, and the import code enforces that
    'qt'     -- tagging decision; this can be any integer number (positive or
                negative); if the tuple should contain a float/double with
                that information, it is rounded appropriately
    'mistag' -- predicted mistag; the import code makes sure that events with
                qt == 0 have mistag = 0.5
    'sample' -- if more than one final state is studied (e.g. Ds final states
                phipi, kstk, nonres, kpipi, pipipi), the events for these
                subsamples often reside in different samples; therefore the
                config dictionary entry 'DataSetNames' can contain a
                dictionary which maps the category labels (phipi etc) to the
                names of the data samples in the ROOT file/workspace

    The config dict key 'DataSetVarNameMapping' contains a useful feature:
    Instead of providing a one-to-one-mapping of observables to tuple/data set
    names, an observable can be calculated from more than one tuple column.
    This is useful e.g. to convert a tuple that's stored the tagging decision
    as untagged/mixed/unmixed, or to sum up sweights for the different
    samples. Most simple formulae should be supported, but constants in
    scientific notation (1.0E+00) are not for now (until someone write a
    better parser for this).

    Example:
    @code
    seed = 42 # it's easy to modify the filename depending on the seed number
    configdict = {
        # file to read from
        'DataFileName': '/some/path/to/file/with/toy_%04d.root' % seed,
        # data set is in a workspace already
        'DataWorkSpaceName':    'FitMeToolWS',
        # name of data set inside workspace
        'DataSetNames':         'combData',
        # mapping between observables and variable name in data set
        'DataSetVarNameMapping': {
            'sample':  'sample',
            'mass':    'lab0_MassFitConsD_M',
            'pidk':    'lab1_PIDK',
            'dsmass':  'lab2_MM',
            'time':    'lab0_LifetimeFit_ctau',
            'timeerr': 'lab0_LifetimeFit_ctauErr',
            'mistag':  'tagOmegaComb',
            'qf':      'lab1_ID',
            'qt': '    tagDecComb',
            # sweights need to be combined from different branches in this
            # case, only one of the branches is ever set to a non-zero value,
            # depending on which subsample the event is in
            'weight': ('nSig_both_nonres_Evts_sw+nSig_both_phipi_Evts_sw+'
                       'nSig_both_kstk_Evts_sw+nSig_both_kpipi_Evts_sw+'
                       'nSig_both_pipipi_Evts_sw')
            }
        }
    # define all observables somewhere, and put the into a RooArgSet called obs
    # import observables in to a workspace saved in ws

    # now read the data set
    data = readDataSet(configdict, ws, observables)
    @endcode
    """
    from ROOT import ( TFile, RooWorkspace, RooRealVar, RooCategory,
        RooBinningCategory, RooUniformBinning, RooMappedCategory,
        RooDataSet, RooArgSet, RooArgList )
    import sys, math
    # local little helper routine
    def round_to_even(x):
        xfl = int(math.floor(x))
        rem = x - xfl
        if rem < 0.5: return xfl
        elif rem > 0.5: return xfl + 1
        else:
            if xfl % 2: return xfl + 1
            else: return xfl
    # another small helper routine
    def tokenize(s, delims = '+-*/()?:'):
        # FIXME: this goes wrong for numerical constants like 1.4e-3
        # proposed solution: regexp for general floating point constants,
        # replace occurences of matches with empty string
        delims = [ c for c in delims ]
        delims.insert(0, None)
        for delim in delims:
            tmp = s.split(delim)
            tmp = list(set(( s + ' ' for s in tmp)))
            s = ''.join(tmp)
        tmp = list(set(s.split(None)))
        return tmp
    # figure out which names from the mapping we need - look at the observables
    names = ()
    for n in config['DataSetVarNameMapping'].keys():
        if None != observables.find(n):
            names += (n,)
    # build RooArgSets and maps with source and destination variables
    dmap = { }
    for k in names: dmap[k] = observables.find(k)
    if None in dmap.values():
        raise NameError('Some variables not found in destination: %s' % str(dmap))
    dset = RooArgSet()
    for v in dmap.values(): dset.add(v)
    if None != dset.find('weight'):
        # RooFit insists on weight variable being first in set
        tmpset = RooArgSet()
        tmpset.add(dset.find('weight'))
        it = dset.fwdIterator()
        while True:
            obj = it.next()
            if None == obj: break
            if 'weight' == obj.GetName(): continue
            tmpset.add(obj)
        dset = tmpset
        del tmpset
        ddata = RooDataSet('agglomeration', 'of positronic circuits', dset, 'weight')
    else:
        ddata = RooDataSet('agglomeration', 'of positronic circuits', dset)
    # open file with data sets
    f = TFile(config['DataFileName'], 'READ')
    # get workspace
    fws = f.Get(config['DataWorkSpaceName'])
    ROOT.SetOwnership(fws, True)
    if None == fws or not fws.InheritsFrom('RooWorkspace'):
        # ok, no workspace, so try to read a tree of the same name and
        # synthesize a workspace
        from ROOT import RooWorkspace, RooDataSet, RooArgList
        fws = RooWorkspace(config['DataWorkSpaceName'])
        iset = RooArgSet()
        addiset = RooArgList()
        it = observables.fwdIterator()
        while True:
            obj = it.next()
            if None == obj: break
            name = config['DataSetVarNameMapping'][obj.GetName()]
            vnames = tokenize(name)
            if len(vnames) > 1 and not obj.InheritsFrom('RooAbsReal'):
                print 'Error: Formulae not supported for categories'
                return None
            if obj.InheritsFrom('RooAbsReal'):
                if 1 == len(vnames):
                    # simple case, just add variable
                    var = WS(fws, RooRealVar(name, name, -sys.float_info.max,
                        sys.float_info.max))
                    iset.addClone(var)
                else:
                    # complicated case - add a bunch of observables, and
                    # compute something in a RooFormulaVar
                    from ROOT import RooFormulaVar
                    args = RooArgList()
                    for n in vnames:
                        try:
                            # skip simple numerical factors
                            float(n)
                        except:
                            var = iset.find(n)
                            if None == var:
                                var = WS(fws, RooRealVar(n, n, -sys.float_info.max,
                                    sys.float_info.max))
                                iset.addClone(var)
                                args.add(iset.find(n))
                    var = WS(fws, RooFormulaVar(name, name, name, args))
                    addiset.addClone(var)
            else:
                for dsname in ((config['DataSetNames'], )
                        if type(config['DataSetNames']) == str else
                        config['DataSetNames']):
                    break
                leaf = f.Get(dsname).GetLeaf(name)
                if None == leaf:
                    leaf = f.Get(dsname).GetLeaf(name + '_idx')
                if leaf.GetTypeName() in (
                        'char', 'unsigned char', 'Char_t', 'UChar_t',
                        'short', 'unsigned short', 'Short_t', 'UShort_t',
                        'int', 'unsigned', 'unsigned int', 'Int_t', 'UInt_t',
                        'long', 'unsigned long', 'Long_t', 'ULong_t',
                        'Long64_t', 'ULong64_t', 'long long',
                        'unsigned long long'):
                    var = WS(fws, RooCategory(name, name))
                    tit = obj.typeIterator()
                    ROOT.SetOwnership(tit, True)
                    while True:
                        tobj = tit.Next()
                        if None == tobj: break
                        var.defineType(tobj.GetName(), tobj.getVal())
                else:
                    var = WS(fws, RooRealVar(name, name, -sys.float_info.max,
                        sys.float_info.max))
                iset.addClone(var)
        for dsname in ((config['DataSetNames'], )
               if type(config['DataSetNames']) == str else
               config['DataSetNames']):
            tmpds = WS(fws, RooDataSet(dsname, dsname,f.Get(dsname), iset), [])
            if 0 != addiset.getSize():
                # need to add columns with RooFormulaVars
                tmpds.addColumns(addiset)
            del tmpds
    # local data conversion routine
    def doIt(config, rangeName, dsname, sname, names, dmap, dset, ddata, fws):
        sdata = fws.obj(dsname)
        if None == sdata: return 0
        if None != config['DataSetCuts']:
            # apply any user-supplied cuts
            newsdata = sdata.reduce(config['DataSetCuts'])
            ROOT.SetOwnership(newsdata, True)
            del sdata
            sdata = newsdata
            del newsdata
        sset = sdata.get()
        smap = { }
        for k in names:
            smap[k] = sset.find(config['DataSetVarNameMapping'][k])
        if 'sample' in smap.keys() and None == smap['sample'] and None != sname:
            smap.pop('sample')
            dmap['sample'].setLabel(sname)
        if None in smap.values():
            raise NameError('Some variables not found in source: %s' % str(smap))
        # # additional complication: toys save decay time in ps, data is in nm
        # # figure out which time conversion factor to use
        # timeConvFactor = 1e9 / 2.99792458e8
        # meantime = sdata.mean(smap['time'])
        # if ((dmap['time'].getMin() <= meantime and
        #         meantime <= dmap['time'].getMax() and config['IsToy']) or
        #         not config['IsToy']):
        #     timeConvFactor = 1.
        # print 'DEBUG: Importing data sample meantime = %f, timeConvFactor = %f' % (
        #         meantime, timeConvFactor)
        timeConvFactor = 1.
        # loop over all entries of data set
        ninwindow = 0
        if None != sname:
            sys.stdout.write('Dataset conversion and fixup: %s: progress: ' % sname)
        else:
            sys.stdout.write('Dataset conversion and fixup: progress: ')
        for i in xrange(0, sdata.numEntries()):
            sdata.get(i)
            if 0 == i % 128:
                sys.stdout.write('*')
            vals = { }
            for vname in smap.keys():
                obj = smap[vname]
                if obj.InheritsFrom('RooAbsReal'):
                    val = obj.getVal()
                    vals[vname] = val
                else:
                    val = obj.getIndex()
                    vals[vname] = val
            # first fixup: apply time/timeerr conversion factor
            if 'time' in dmap.keys():
                vals['time'] *= timeConvFactor
            if 'timeerr' in dmap.keys():
                vals['timeerr'] *= timeConvFactor
            # second fixup: only sign of qf is important
            if 'qf' in dmap.keys():
                vals['qf'] = 1 if vals['qf'] > 0.5 else (-1 if vals['qf'] <
                        -0.5 else 0.)
            # third fixup: untagged events are forced to 0.5 mistag
            if ('qt' in dmap.keys() and 'mistag' in dmap.keys() and 0 ==
                    vals['qt']):
                vals['mistag'] = 0.5
            # apply cuts
            inrange = True
            for vname in dmap.keys():
                if not dmap[vname].InheritsFrom('RooAbsReal'): continue
                # no need to cut on untagged events
                if 'mistag' == vname and 0 == vals['qt']: continue
                if None != rangeName and dmap[vname].hasRange(rangeName):
                    if (dmap[vname].getMin(rangeName) > vals[vname] or
                            vals[vname] >= dmap[vname].getMax(rangeName)):
                        inrange = False
                        break
                else:
                    if (dmap[vname].getMin() > vals[vname] or
                            vals[vname] >= dmap[vname].getMax()):
                        inrange = False
                        break
            # skip cuts which are not within the allowed range
            if not inrange: continue
            # copy values over, doing real-category conversions as needed
            for vname in smap.keys():
                dvar, svar = dmap[vname], vals[vname]
                if dvar.InheritsFrom('RooAbsRealLValue'):
                    if float == type(svar): dvar.setVal(svar)
                    elif int == type(svar): dvar.setVal(svar)
                elif dvar.InheritsFrom('RooAbsCategoryLValue'):
                    if int == type(svar): dvar.setIndex(svar)
                    elif float == type(svar):
                        dvar.setIndex(round_to_even(svar))
            if 'weight' in dmap:
                ddata.add(dset, vals['weight'])
            else:
                ddata.add(dset)
            ninwindow = ninwindow + 1
        del sdata
        sys.stdout.write(', done - %d events\n' % ninwindow)
        return ninwindow
    ninwindow = 0
    if type(config['DataSetNames']) == str:
        ninwindow += doIt(config, rangeName, config['DataSetNames'],
                None, names, dmap, dset, ddata, fws)
    else:
        for sname in config['DataSetNames'].keys():
            ninwindow += doIt(config, rangeName, config['DataSetNames'][sname],
                    sname, names, dmap, dset, ddata, fws)
    # free workspace and close file
    del fws
    f.Close()
    del f
    # put the new dataset into our proper workspace
    ddata = WS(ws, ddata, [])
    # for debugging
    if config['Debug']:
        ddata.Print('v')
        if 'qt' in dmap.keys():
            data.table(dmap['qt']).Print('v')
        if 'qf' in dmap.keys():
            data.table(dmap['qf']).Print('v')
        if 'qf' in dmap.keys() and 'qt' in dmap.keys():
            data.table(RooArgSet(dmap['qt'], dmap['qf'])).Print('v')
        if 'sample' in dmap.keys():
            data.table(dmap['sample']).Print('v')
    # all done, return Data to the bridge
    return ddata
Exemple #14
0
def buildSplineAcceptance(
        ws,     # workspace into which to import
        time,   # time variable
        pfx,    # prefix to be used in names
        knots,  # knots
        coeffs, # acceptance coefficients
        floatParams = False, # float acceptance parameters
        debug = False # debug printout
        ): 
    """
    build a spline acceptance function

    ws          -- workspace into which to import acceptance functions
    time        -- time observable
    pfx         -- prefix (mode name) from which to build object names
    knots       -- list of knot positions
    coeffs      -- spline coefficients
    floatParams -- if True, spline acceptance parameters will be floated
    debug       -- if True, print some debugging output

    returns a pair of acceptance functions, first the unnormalised one for
    fitting, then the normalised one for generation

    The minimum and maximum of the range of the time variable implicitly
    defines the position of the first and last knot. The other knot positions
    are passed in knots. Conversely, the coeffs parameter records the height
    of the sline at all but the last two knot positions. The next to last knot
    coefficient is fixed to 1.0, thus fixing the overall scale of the
    acceptance function. The spline coefficient for the last knot is fixed by
    extrapolating linearly from the two knots before; this prevents
    statistical fluctuations at the low stats high lifetime end of the
    spectrum to curve the spline.
    """
    # build acceptance function
    from copy import deepcopy
    myknots = deepcopy(knots)
    mycoeffs = deepcopy(coeffs)
    from ROOT import (RooBinning, RooArgList, RooPolyVar, RooCubicSplineFun,
            RooConstVar, RooProduct, RooRealVar)
    if (len(myknots) != len(mycoeffs) or 0 >= min(len(myknots), len(mycoeffs))):
        raise ValueError('ERROR: Spline knot position list and/or coefficient'
                'list mismatch')
    one = WS(ws, RooConstVar('one', '1', 1.0))
    # create the knot binning
    knotbinning = WS(ws, RooBinning(time.getMin(), time.getMax(),
        '%s_knotbinning' % pfx))
    for v in myknots:
        knotbinning.addBoundary(v)
    knotbinning.removeBoundary(time.getMin())
    knotbinning.removeBoundary(time.getMax())
    knotbinning.removeBoundary(time.getMin())
    knotbinning.removeBoundary(time.getMax())
    oldbinning, lo, hi = time.getBinning(), time.getMin(), time.getMax()
    time.setBinning(knotbinning, '%s_knotbinning' % pfx)
    time.setBinning(oldbinning)
    time.setRange(lo, hi)
    del knotbinning
    del oldbinning
    del lo
    del hi
    # create the knot coefficients
    coefflist = RooArgList()
    i = 0
    for v in mycoeffs:
        if floatParams:
            coefflist.add(WS(ws, RooRealVar('%s_SplineAccCoeff%u' % (pfx, i),
                'v_{%u}' % (i+1), v, 0., 3.)))
        else:
            coefflist.add(WS(ws, RooConstVar('%s_SplineAccCoeff%u' % (pfx, i),
                'v_{%u}' % (i+1), v)))
        i = i + 1
    del mycoeffs
    coefflist.add(one)
    i = i + 1
    myknots.append(time.getMax())
    myknots.reverse()
    fudge = (myknots[0] - myknots[1]) / (myknots[2] - myknots[1])
    lastmycoeffs = RooArgList(
            WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff0' % (pfx, i),
                '%s_SplineAccCoeff%u_coeff0' % (pfx, i), 1. - fudge)),
            WS(ws, RooConstVar('%s_SplineAccCoeff%u_coeff1' % (pfx, i),
                '%s_SplineAccCoeff%u_coeff1' % (pfx, i), fudge)))
    del myknots
    coefflist.add(WS(ws, RooPolyVar(
        '%s_SplineAccCoeff%u' % (pfx, i), 'v_{%u}' % (i+1),
        coefflist.at(coefflist.getSize() - 2), lastmycoeffs)))
    del i
    if debug:
        print 'DEBUG: Spline Coeffs: %s' % str([
            coefflist.at(i).getVal() for i in xrange(0, coefflist.getSize())
            ])
    # create the spline itself
    tacc = WS(ws, RooCubicSplineFun('%s_SplineAcceptance' % pfx,
        '%s_SplineAcceptance' % pfx, time, '%s_knotbinning' % pfx,
        coefflist))
    del lastmycoeffs
    if not floatParams:
        # make sure the acceptance is <= 1 for generation
        m = max([coefflist.at(j).getVal() for j in
            xrange(0, coefflist.getSize())])
        c = WS(ws, RooConstVar('%s_SplineAccNormCoeff' % pfx,
            '%s_SplineAccNormCoeff' % pfx, 0.99 / m))
        tacc_norm = WS(ws, RooProduct('%s_SplineAcceptanceNormalised' % pfx,
            '%s_SplineAcceptanceNormalised' % pfx, RooArgList(tacc, c)))
        del c
        del m
    else:
        tacc_norm = None # not supported when floating
    del coefflist
    return tacc, tacc_norm