Exemple #1
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Exemple #2
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Exemple #3
0
def fit():

    #fit to log_10(pT^2) with components and plot of plain pT^2

    #range in log_10(pT^2)
    ptbin = 0.12
    ptmin = -5.
    ptmax = 0.99  # 1.01

    #range in pT^2
    ptsq_bin = 0.03
    ptsq_min = 1e-5
    ptsq_max = 1

    mmin = 2.8
    mmax = 3.2

    #range for incoherent fit
    fitran = [-0.9, 0.1]

    #number of gamma-gamma events
    ngg = 131

    #number of psi' events
    npsiP = 20

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    data_all = RooDataSet("data", "data", tree, RooArgSet(pT, m))
    #select for mass range
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = data_all.reduce(strsel)

    #create log(pT^2) from pT
    ptsq_draw = "jRecPt*jRecPt"  # will be used for pT^2
    logPtSq_draw = "TMath::Log10(" + ptsq_draw + ")"
    logPtSq_form = RooFormulaVar("logPtSq", "logPtSq", logPtSq_draw,
                                 RooArgList(pT))
    logPtSq = data.addColumn(logPtSq_form)
    logPtSq.setRange("fitran", fitran[0], fitran[1])

    #bins and range for the plot
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    logPtSq.setMin(ptmin)
    logPtSq.setMax(ptmax)
    logPtSq.setRange("plotran", ptmin, ptmax)

    #range for pT^2
    ptsq_nbins, ptsq_max = ut.get_nbins(ptsq_bin, ptsq_min, ptsq_max)

    #incoherent parametrization
    bval = RooRealVar("bval", "bval", 3.3, 0, 10)
    inc_form = "log(10.)*pow(10.,logPtSq)*exp(-bval*pow(10.,logPtSq))"
    incpdf = RooGenericPdf("incpdf", inc_form, RooArgList(logPtSq, bval))

    #make the incoherent fit
    res = incpdf.fitTo(data, rf.Range("fitran"), rf.Save())

    #get incoherent norm to the number of events
    lset = RooArgSet(logPtSq)
    iinc = incpdf.createIntegral(lset, rf.NormSet(lset), rf.Range("fitran"))
    inc_nevt = data.sumEntries("logPtSq", "fitran")
    incpdf.setNormRange("fitran")
    aval = RooRealVar("aval", "aval", inc_nevt / incpdf.getNorm(lset))
    #print "A =", aval.getVal()
    #print "b =", bval.getVal()

    #incoherent distribution from log_10(pT^2) function for the sum with gamma-gamma
    hIncPdf = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kMagenta)
    func_incoh_logPt2.SetParameters(
        aval.getVal(),
        bval.getVal())  # 4.9 from incoherent mc, 3.3 from data fit
    ut.fill_h1_tf(hIncPdf, func_incoh_logPt2, rt.kMagenta)

    #gamma-gamma contribution
    hGG = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    tree_gg.Draw(logPtSq_draw + " >> hGG", strsel)
    ut.norm_to_num(hGG, ngg, rt.kGreen + 1)

    #sum of incoherent distribution and gamma-gamma
    hSumIncGG = ut.prepare_TH1D_n("hSumIncGG", nbins, ptmin, ptmax)
    hSumIncGG.Add(hIncPdf)
    hSumIncGG.Add(hGG)
    ut.line_h1(hSumIncGG, rt.kMagenta)

    #gamma-gamma in pT^2
    hGG_ptsq = ut.prepare_TH1D_n("hGG_ptsq", ptsq_nbins, ptsq_min, ptsq_max)
    tree_gg.Draw(ptsq_draw + " >> hGG_ptsq", strsel)
    ut.norm_to_num(hGG_ptsq, ngg, rt.kGreen + 1)

    #psi' contribution
    psiP_file = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP_file.Get("jRecTree")
    hPsiP = ut.prepare_TH1D_n("hPsiP", nbins, ptmin, ptmax)
    psiP_tree.Draw(logPtSq_draw + " >> hPsiP", strsel)
    ut.norm_to_num(hPsiP, npsiP, rt.kViolet)

    #psi' in pT^2
    hPsiP_ptsq = ut.prepare_TH1D_n("hPsiP_ptsq", ptsq_nbins, ptsq_min,
                                   ptsq_max)
    psiP_tree.Draw(ptsq_draw + " >> hPsiP_ptsq", strsel)
    ut.norm_to_num(hPsiP_ptsq, npsiP, rt.kViolet)

    #create canvas frame
    gStyle.SetPadTickY(1)
    can = ut.box_canvas(1086, 543)  # square area is still 768^2
    can.SetMargin(0, 0, 0, 0)
    can.Divide(2, 1, 0, 0)
    gStyle.SetLineWidth(1)

    can.cd(1)
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0)

    frame = logPtSq.frame(rf.Bins(nbins))
    frame.SetTitle("")
    frame.SetMaximum(80)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")
    frame.SetXTitle("log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    #plot the data
    data.plotOn(frame, rf.Name("data"), rf.LineWidth(2))

    #incoherent parametrization
    incpdf.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf"), rf.LineWidth(2))
    incpdf.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf_full"), rf.LineStyle(rt.kDashed),
                  rf.LineWidth(2))

    frame.Draw()

    #add gamma-gamma contribution
    hGG.Draw("same")

    #sum of incoherent distribution and gamma-gamma
    #hSumIncGG.Draw("same")

    #add psi'
    #hPsiP.Draw("same")

    #legend for log_10(pT^2)
    leg = ut.prepare_leg(0.15, 0.77, 0.28, 0.19, 0.035)
    hxl = ut.prepare_TH1D("hxl", 1, 0, 1)
    hxl.Draw("same")
    ilin = ut.col_lin(rt.kRed, 2)
    ilin2 = ut.col_lin(rt.kRed, 2)
    ilin2.SetLineStyle(rt.kDashed)
    leg.AddEntry(ilin, "Incoherent parametrization, fit region", "l")
    leg.AddEntry(ilin2, "Incoherent parametrization, extrapolation region",
                 "l")
    leg.AddEntry(hGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(hxl, "Data", "lp")
    leg.AddEntry(hxl, "Data, log_{10}( #it{p}_{T}^{2} )", "lp")
    leg.Draw("same")

    #----- plot pT^2 on the right -----

    #pT^2 variable from pT
    ptsq_form = RooFormulaVar("ptsq", "ptsq", ptsq_draw, RooArgList(pT))
    ptsq = data.addColumn(ptsq_form)

    #range for pT^2 plot
    ptsq.setMin(ptsq_min)
    ptsq.setMax(ptsq_max)

    #make the pT^2 plot
    can.cd(2)
    gPad.SetLogy()
    #gPad.SetLineWidth(3)
    #gPad.SetFrameLineWidth(1)
    ut.set_margin_lbtr(gPad, 0, 0.1, 0.01, 0.15)

    ptsq_frame = ptsq.frame(rf.Bins(ptsq_nbins), rf.Title(""))

    #print type(ptsq_frame), type(ptsq)

    ptsq_frame.SetTitle("")

    ptsq_frame.SetXTitle("#it{p}_{T}^{2} (GeV^{2})")
    ptsq_frame.GetXaxis().SetTitleOffset(1.2)

    data.plotOn(ptsq_frame, rf.Name("data"), rf.LineWidth(2))

    ptsq_frame.SetMaximum(9e2)
    ptsq_frame.SetMinimum(0.8)  # 0.101

    ptsq_frame.Draw()

    #incoherent parametrization in pT^2 over the fit region, scaled to the plot
    inc_ptsq = TF1("inc_ptsq", "[0]*exp(-[1]*x)", 10**fitran[0], 10**fitran[1])
    inc_ptsq.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())

    #incoherent parametrization in the extrapolation region, below and above the fit region
    inc_ptsq_ext1 = TF1("inc_ptsq_ext1", "[0]*exp(-[1]*x)", 0., 10**fitran[0])
    inc_ptsq_ext2 = TF1("inc_ptsq_ext2", "[0]*exp(-[1]*x)", 10**fitran[1], 10)
    inc_ptsq_ext1.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext1.SetLineStyle(rt.kDashed)
    inc_ptsq_ext2.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext2.SetLineStyle(rt.kDashed)

    inc_ptsq.Draw("same")
    inc_ptsq_ext1.Draw("same")
    inc_ptsq_ext2.Draw("same")

    #add gamma-gamma in pT^2
    hGG_ptsq.Draw("same")

    #add psi' in pT^2
    #hPsiP_ptsq.Draw("same")

    #redraw the frame
    #ptsq_frame.Draw("same")

    ptsq_frame.GetXaxis().SetLimits(-9e-3, ptsq_frame.GetXaxis().GetXmax())

    #vertical axis for pT^2 plot
    xpos = ptsq_frame.GetXaxis().GetXmax()
    ypos = ptsq_frame.GetMaximum()
    ymin = ptsq_frame.GetMinimum()

    ptsq_axis = TGaxis(xpos, 0, xpos, ypos, ymin, ypos, 510, "+GL")
    ut.set_axis(ptsq_axis)
    ptsq_axis.SetMoreLogLabels()

    ptsq_axis.SetTitle("Events / ({0:.3f}".format(ptsq_bin) + " GeV^{2})")
    ptsq_axis.SetTitleOffset(2.2)

    ptsq_axis.Draw()

    #legend for input data
    #dleg = ut.prepare_leg(0.4, 0.77, 0.14, 0.18, 0.035)
    dleg = ut.prepare_leg(0.4, 0.71, 0.16, 0.24, 0.035)
    dleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(dleg, mmin, mmax)
    dleg.AddEntry(None, "AuAu@200 GeV", "")
    dleg.AddEntry(None, "UPC sample", "")
    dleg.AddEntry(hxl, "Data, #it{p}_{T}^{2}", "lp")
    dleg.Draw("same")

    #ut.invert_col_can(can)
    can.SaveAs("01fig.pdf")