Exemple #1
0
def testmodel_random_nolimit(path):
    model = load_model(path)

    # Define size of environment
    x_up_bound = 60  # 120
    x_low_bound = 0
    y_up_bound = 60  #120
    y_low_bound = 0

    # x_goal = (100, 100)
    #
    # X_dimensions = np.array([(0, 120), (0, 120)])  # dimension of serach space
    # Obstacles = np.array([(20, 20, 40, 40), (20, 60, 40, 80),
    #                       (60, 20, 80, 40), (60, 60, 80, 80)])  # obstacles
    x_goal = (30, 60)  # goal location(100, 100)
    X_dimensions = np.array([(x_low_bound, x_up_bound),
                             (y_low_bound, y_up_bound)
                             ])  # dimension of serach space
    Obstacles = np.array([(0, 0, 20, 20), (0, 40, 20, 60), (40, 0, 60, 20),
                          (40, 40, 60, 60)])  # obstacles
    X = SearchSpace(X_dimensions, Obstacles)

    x_init = (random.randrange(x_low_bound, x_up_bound),
              random.randrange(y_low_bound, y_up_bound))
    while is_Obstacle(x_init, Obstacles):
        x_init = (random.randrange(x_low_bound, x_up_bound),
                  random.randrange(y_low_bound, y_up_bound))

    x_position = np.zeros((1, 2))
    x_position[0][0] = x_init[0]
    x_position[0][1] = x_init[1]
    path = list()
    x_temp = (x_position[0][0], x_position[0][1])
    path.append(x_temp)
    for i in range(100):
        y_pred = model.predict(x_position)
        print(y_pred)
        x_position = y_pred
        position = [x_position[0][0], x_position[0][1]]
        x_temp = (x_position[0][0], x_position[0][1])
        path.append(x_temp)
        if x_position[0][0] > x_up_bound or x_position[0][
                1] > y_up_bound or x_position[0][
                    0] < x_low_bound or x_position[0][1] < y_low_bound:
            break
    print("Final position is", x_position)

    plot = Plot("rrt_2d")
    plot.plot_path(X, path)
    plot.plot_obstacles(X, Obstacles)
    plot.plot_start(X, x_init)
    plot.plot_goal(X, x_goal)
    plot.draw(auto_open=True)

    del model
def obplot(obstacles, goal1):
    X_dimensions = np.array([(0, EnviromBoundx), (0, EnviromBoundy)])  # dimensions of Search Space
    # obstacles
    Obstacles = np.array([(ob[0][0], ob[0][1], ob[2][0], ob[2][1]) for ob in obstacles])
    X = SearchSpace(X_dimensions, Obstacles)


    path1 = [[0, 0], goal1]
    plot = Plot("obst_env")
    plot.plot_path(X, path1)
    plot.plot_obstacles(X, Obstacles)
    # plot.plot_start(X, x_init)
    # plot.plot_goal(X, x_goal)
    plot.draw(auto_open=True)
def RRT_arm(obstacles, goalxy, thetas):

    if goalxy[0] > EnviromBoundx or goalxy[1] > EnviromBoundy:
        print("We cannot reach that bound.")
        return False

    X_dimensions = np.array([(0, EnviromBoundx),
                             (0, EnviromBoundy)])  # dimensions of Search Space
    # obstacles

    Obstacles = np.array([(ob[0], 0, ob[1], ob[2]) for ob in obstacles])
    print(Obstacles)
    # Obstacles = np.array([(20, 20, 40, 40), (20, 60, 40, 80), (60, 20, 80, 40), (60, 60, 80, 80)])
    x_init = (initialx, initialy)  # starting location
    x_goal = (goalxy[0], goalxy[1])  # goal location

    Q = np.array([(1, 1)])  # length of tree edges
    r = l1 / 10  # length of smallest edge to check for intersection with obstacles
    max_samples = 1024  # max number of samples to take before timing out
    prc = 0.2  # probability of checking for a connection to goal

    # create search space
    X = SearchSpace(X_dimensions, Obstacles)

    # create rrt_search
    rrt = RRT(X, Q, x_init, x_goal, max_samples, r, prc)
    path = rrt.rrt_search()

    thetas_c = thetas.copy()
    i = 0
    for point in path:
        i = i + 1
        print(point)
        thetas_c[1], thetas_c[2], thetas_c[3] = iv.iter(
            thetas_c[1], thetas_c[2], thetas_c[3], point[0], point[1])
        for ob in Obstacles:
            if obt.ArmStatusCheck(thetas, ob):
                return False
        print("The", i, "th Angles is:", thetas_c, "when grabber go to", point)

    # plot
    plot = Plot("rrt_2d")
    plot.plot_tree(X, rrt.trees)
    if path is not None:
        plot.plot_path(X, path)
    plot.plot_obstacles(X, Obstacles)
    plot.plot_start(X, x_init)
    plot.plot_goal(X, x_goal)
    plot.draw(auto_open=True)
    return True
Exemple #4
0
def testmodel_fromzero(path, xinit, yinit):
    x_up_bound = 60  # 120
    x_low_bound = 0
    y_up_bound = 60  # 120
    y_low_bound = 0
    model = load_model(path)
    x_init = (xinit, yinit)
    x_goal = (30, 60)  # goal location(100, 100)
    X_dimensions = np.array([(x_low_bound, x_up_bound),
                             (y_low_bound, y_up_bound)
                             ])  # dimension of serach space
    Obstacles = np.array([(0, 0, 20, 20), (0, 40, 20, 60), (40, 0, 60, 20),
                          (40, 40, 60, 60)])  # obstacles
    X = SearchSpace(X_dimensions, Obstacles)

    x_position = np.zeros((1, 2))
    x_position[0][0] = xinit
    x_position[0][1] = yinit
    path = list()
    x_temp = (x_position[0][0], x_position[0][1])
    path.append(x_temp)
    for i in range(100):
        # print(x_position)
        y_pred = model.predict(x_position)
        print(y_pred)
        # breakpoint()
        x_position = y_pred
        position = [x_position[0][0], x_position[0][1]]
        x_temp = (x_position[0][0], x_position[0][1])
        path.append(x_temp)
        if x_position[0][0] > x_up_bound or x_position[0][
                1] > y_up_bound or x_position[0][
                    0] < x_low_bound or x_position[0][1] < y_low_bound:
            break
    print("Final position is", x_position)

    plot = Plot("rrt_2d")
    plot.plot_path(X, path)
    plot.plot_obstacles(X, Obstacles)
    plot.plot_start(X, x_init)
    plot.plot_goal(X, x_goal)
    plot.draw(auto_open=True)

    del model
x_goal = (100, 100)  # goal location
X_dimensions = np.array([(0, 120), (0, 120)])  # dimension of serach space
Obstacles = np.array([(20, 20, 40, 40), (20, 60, 40, 80), (60, 20, 80, 40),
                      (60, 60, 80, 80)])  # obstacles

Q = np.array([(8, 4)])  # length of tree edges
r = 1  # length of smallest edge to check for intersection with obstacles
max_samples = 1024  # max number of samples to take before timing out
prc = 0.1  # probability of checking for a connection to goal
max_iteration = 100000  #100000
data_size = 100000  #100000
x = np.zeros((data_size, 2))
y = np.zeros((data_size, 2))
data_position = 0

X = SearchSpace(X_dimensions, Obstacles)

for i in range(max_iteration):
    # create rrt_search
    rrt = RRT(X, Q, x_init, x_goal, max_samples, r, prc)
    path = rrt.rrt_search()
    for k in range(len(path) - 1):
        x[data_position] = path[k]
        y[data_position] = path[k + 1]
        data_position += 1
        if data_position >= data_size:
            break
    if data_position >= data_size:
        break

print("Data Collected")