def tabular_figs02(): fig=plt.figure() axes=[] for i in range(len(sigmas)): axes.append([]) for j in range(len(nbins)): if sigmas[i]==0: iscatter=False else: iscatter= True rst = main( ## main variables sigma=sigmas[i], psi_nbin=nbins[j], ## minor sin2psimx=0.5, iscatter=iscatter, iplot=False,dec_inv_frq=1, dec_interp=1) model_rs, flow_weight, flow_dsa = rst ax=fig.add_subplot(gs[i,j]) ax.locator_params(nbins=4) axes[i].append(ax) # von mises lab1=r'$(\langle \sigma^c \rangle)^{VM}$' lab2=r'$(\sigma^\mathrm{RS})^{VM}$' ax.plot(flow_weight.epsilon_vm, flow_weight.sigma_vm,'k-',label=lab1) ax.plot(flow_dsa.epsilon_vm, flow_dsa.sigma_vm,'kx',label=lab2) if i==len(sigmas)-1 and j==0: #VM Deco axes_label.__vm__(ax=ax,ft=10) else: mpl_lib.rm_lab(ax,axis='x') mpl_lib.rm_lab(ax,axis='y') for iax in range(len(fig.axes)): fig.axes[iax].set_ylim(0,) fig.axes[iax].set_xlim(0,) tune_xy_lim(fig.axes) tune_x_lim(fig.axes,axis='y') ## annotations for j in range(len(nbins)): if j==0: s=r'$N^\psi$=%i'%nbins[j] else: s = '%i'%nbins[j] axes[0][j].annotate( s=s,horizontalalignment='center', size=14,xy=(0.5,1.2), xycoords='axes fraction') for i in range(len(sigmas)): if i==0: s=r'$s^\mathrm{CSE}$=%i'%( sigmas[i]*(10**6)) elif i==len(sigmas)-1: s=r'%i $\mu$ strain'%( sigmas[i]*(10**6)) else: s='%i'%(sigmas[i]*(10**6)) axes[i][-1].annotate( s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=14,xy=(1.20,0.5), xycoords='axes fraction') fancy_legend( fig.axes[0],size=11,nscat=1,ncol=1, bbox_to_anchor=(-0.4,1)) # vm fig.axes[len(sigmas)*len(nbins)-len(nbins)].\ set_xticks(np.arange(0.,1.01,0.5)) fig.savefig('tab2.pdf') fig.savefig('tab2.png') fig.clf()
def tabular_figs02(): fig = plt.figure() axes = [] for i in xrange(len(sigmas)): axes.append([]) for j in xrange(len(nbins)): if sigmas[i] == 0: iscatter = False else: iscatter = True rst = main( ## main variables sigma=sigmas[i], psi_nbin=nbins[j], ## minor sin2psimx=0.5, iscatter=iscatter, iplot=False, dec_inv_frq=1, dec_interp=1) model_rs, flow_weight, flow_dsa = rst ax = fig.add_subplot(gs[i, j]) ax.locator_params(nbins=4) axes[i].append(ax) # von mises lab1 = r'$(\langle \sigma^c \rangle)^{VM}$' lab2 = r'$(\sigma^\mathrm{RS})^{VM}$' ax.plot(flow_weight.epsilon_vm, flow_weight.sigma_vm, 'k-', label=lab1) ax.plot(flow_dsa.epsilon_vm, flow_dsa.sigma_vm, 'kx', label=lab2) if i == len(sigmas) - 1 and j == 0: #VM Deco axes_label.__vm__(ax=ax, ft=10) else: mpl_lib.rm_lab(ax, axis='x') mpl_lib.rm_lab(ax, axis='y') for iax in xrange(len(fig.axes)): fig.axes[iax].set_ylim(0, ) fig.axes[iax].set_xlim(0, ) tune_xy_lim(fig.axes) tune_x_lim(fig.axes, axis='y') ## annotations for j in xrange(len(nbins)): if j == 0: s = r'$N^\psi$=%i' % nbins[j] else: s = '%i' % nbins[j] axes[0][j].annotate(s=s, horizontalalignment='center', size=14, xy=(0.5, 1.2), xycoords='axes fraction') for i in xrange(len(sigmas)): if i == 0: s = r'$s^\mathrm{CSE}$=%i' % (sigmas[i] * (10**6)) elif i == len(sigmas) - 1: s = r'%i $\mu$ strain' % (sigmas[i] * (10**6)) else: s = '%i' % (sigmas[i] * (10**6)) axes[i][-1].annotate(s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=14, xy=(1.20, 0.5), xycoords='axes fraction') fancy_legend(fig.axes[0], size=11, nscat=1, ncol=1, bbox_to_anchor=(-0.4, 1)) # vm fig.axes[len(sigmas)*len(nbins)-len(nbins)].\ set_xticks(np.arange(0.,1.01,0.5)) fig.savefig('tab2.pdf') fig.savefig('tab2.png') fig.clf()
def tabular_figs01(): """ Ehkl vs sin2psi plot y (sigmas) x (nbins) """ fig=plt.figure() axes=[] for i in range(len(sigmas)): axes.append([]) for j in range(len(nbins)): ax=fig.add_subplot(gs[i,j]) axes[i].append(ax) ax.locator_params(nbins=4); if sigmas[i]==0: iscatter=False else: iscatter= True rst = main( ## main variables sigma=sigmas[i], psi_nbin=nbins[j], ## minor sin2psimx=0.5, iscatter=iscatter, istep=2,iplot=False,dec_inv_frq=1, dec_interp=1) model_rs, sig11, sig22, dsa11,dsa22,\ raw_psis,raw_vfs, raw_sfs,\ full_Ei,dec_intp = rst # raise IOError x = sin2psi_opt(model_rs.psis, 1) ax.plot( x, model_rs.tdat[0]*1e6,'k.', label=\ r'$\tilde{ \langle\varepsilon^e \rangle}^G$') ax.plot( x, model_rs.Ei[0]*1e6,'kx', label=\ r'$\mathbb{F}_{ij} \sigma^\mathrm{RS}_{ij}$') x = sin2psi_opt(raw_psis, 1) # ax.plot(x, full_Ei[0]*1e6,'k-') ## continuous Ei ## ax.plot(raw_psis, dec_intp[0][0]*1e6,'k--') ## True Ei? = F_ij * <sigma>^c_{ij} model_rs.psis = raw_psis.copy() model_rs.npsi = len(model_rs.psis) model_rs.cffs = raw_sfs.copy() ## plug the weight average stress model_rs.sigma=[sig11, sig22, 0, 0, 0, 0] model_rs.calc_Ei() ax.plot( x,model_rs.Ei[0]*1e6,'k-', label=r'$\mathbb{F}_{ij} \langle\sigma\rangle^c_{ij}$' ) if i==len(sigmas)-1 and j==0: deco(ax=ax,iopt=0,hkl=None,ipsi_opt=1) else: mpl_lib.rm_lab(ax,axis='x') mpl_lib.rm_lab(ax,axis='y') for j in range(len(nbins)): if j==0: s=r'$N^\psi$=%i'%nbins[j] else: s = '%i'%nbins[j] axes[0][j].annotate( s=s,horizontalalignment='center', size=14,xy=(0.5,1.2), xycoords='axes fraction') for i in range(len(sigmas)): if i==0: s=r'$s^\mathrm{CSE}$=%i'%( sigmas[i]*(10**6)) elif i==len(sigmas)-1: s=r'%i $\mu$ strain'%( sigmas[i]*(10**6)) else: s='%i'%(sigmas[i]*(10**6)) axes[i][-1].annotate( s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=14,xy=(1.20,0.5), xycoords='axes fraction') for iax in range(len(fig.axes)): fig.axes[iax].set_ylim(-1500,) tune_xy_lim(fig.axes) tune_x_lim(fig.axes,axis='y') # plt.annotate(s=r'$\varepsilon^\mathrm{CSE}$ Counting Statistics Error', # size=20,rotation=90, # verticalalignment='center', # horizontalalignment='center', # xy=(1.01,0.5), # xycoords='figure fraction') # plt.annotate(s=r'Number of $\psi$',size=20, # horizontalalignment='center', # xy=(0.6,0.93), # xycoords='figure fraction') fig.axes[len(sigmas)*len(nbins)-len(nbins)].\ set_xticks(np.arange(-0.5,0.501,0.5)) fancy_legend( fig.axes[0],size=11,nscat=1,ncol=1, bbox_to_anchor=(-0.4,1)) fig.savefig('tab.pdf') fig.savefig('tab.png') fig.clf()
def tabular_figs01(): """ Ehkl vs sin2psi plot y (sigmas) x (nbins) """ fig = plt.figure() axes = [] for i in xrange(len(sigmas)): axes.append([]) for j in xrange(len(nbins)): ax = fig.add_subplot(gs[i, j]) axes[i].append(ax) ax.locator_params(nbins=4) if sigmas[i] == 0: iscatter = False else: iscatter = True rst = main( ## main variables sigma=sigmas[i], psi_nbin=nbins[j], ## minor sin2psimx=0.5, iscatter=iscatter, istep=2, iplot=False, dec_inv_frq=1, dec_interp=1) model_rs, sig11, sig22, dsa11,dsa22,\ raw_psis,raw_vfs, raw_sfs,\ full_Ei,dec_intp = rst # raise IOError x = sin2psi_opt(model_rs.psis, 1) ax.plot( x, model_rs.tdat[0]*1e6,'k.', label=\ r'$\tilde{ \langle\varepsilon^e \rangle}^G$') ax.plot( x, model_rs.Ei[0]*1e6,'kx', label=\ r'$\mathbb{F}_{ij} \sigma^\mathrm{RS}_{ij}$') x = sin2psi_opt(raw_psis, 1) # ax.plot(x, full_Ei[0]*1e6,'k-') ## continuous Ei ## ax.plot(raw_psis, dec_intp[0][0]*1e6,'k--') ## True Ei? = F_ij * <sigma>^c_{ij} model_rs.psis = raw_psis.copy() model_rs.npsi = len(model_rs.psis) model_rs.cffs = raw_sfs.copy() ## plug the weight average stress model_rs.sigma = [sig11, sig22, 0, 0, 0, 0] model_rs.calc_Ei() ax.plot(x, model_rs.Ei[0] * 1e6, 'k-', label=r'$\mathbb{F}_{ij} \langle\sigma\rangle^c_{ij}$') if i == len(sigmas) - 1 and j == 0: deco(ax=ax, iopt=0, hkl=None, ipsi_opt=1) else: mpl_lib.rm_lab(ax, axis='x') mpl_lib.rm_lab(ax, axis='y') for j in xrange(len(nbins)): if j == 0: s = r'$N^\psi$=%i' % nbins[j] else: s = '%i' % nbins[j] axes[0][j].annotate(s=s, horizontalalignment='center', size=14, xy=(0.5, 1.2), xycoords='axes fraction') for i in xrange(len(sigmas)): if i == 0: s = r'$s^\mathrm{CSE}$=%i' % (sigmas[i] * (10**6)) elif i == len(sigmas) - 1: s = r'%i $\mu$ strain' % (sigmas[i] * (10**6)) else: s = '%i' % (sigmas[i] * (10**6)) axes[i][-1].annotate(s=s, verticalalignment='center', horizontalalignment='center', rotation=270, size=14, xy=(1.20, 0.5), xycoords='axes fraction') for iax in xrange(len(fig.axes)): fig.axes[iax].set_ylim(-1500, ) tune_xy_lim(fig.axes) tune_x_lim(fig.axes, axis='y') # plt.annotate(s=r'$\varepsilon^\mathrm{CSE}$ Counting Statistics Error', # size=20,rotation=90, # verticalalignment='center', # horizontalalignment='center', # xy=(1.01,0.5), # xycoords='figure fraction') # plt.annotate(s=r'Number of $\psi$',size=20, # horizontalalignment='center', # xy=(0.6,0.93), # xycoords='figure fraction') fig.axes[len(sigmas)*len(nbins)-len(nbins)].\ set_xticks(np.arange(-0.5,0.501,0.5)) fancy_legend(fig.axes[0], size=11, nscat=1, ncol=1, bbox_to_anchor=(-0.4, 1)) fig.savefig('tab.pdf') fig.savefig('tab.png') fig.clf()