def LoadData():

    connectionCalv2 = SQL_CURSOR('earningsCalendarForTraining.db')
    earningsInfoSaved = pd.read_sql('SELECT * FROM earningsInfo',
                                    connectionCalv2)

    return earningsInfoSaved
Exemple #2
0
import os, sys
import datetime
import pandas as pd
import base as b
import math
from ReadData import is_date, SQL_CURSOR, UpdateTable, GetTimeSlot

sqlcursor = SQL_CURSOR(db_name='stocksShort.db')
sqlcursorExtra = SQL_CURSOR(db_name='stocksShortExtra.db')

expectedKeys = [
    'Index', 'Market Cap', 'Income', 'Sales', 'Book/sh', 'Cash/sh', 'Dividend',
    'Dividend %', 'Employees', 'Optionable', 'Shortable', 'Recom', 'P/E',
    'Forward P/E', 'PEG', 'P/S', 'P/B', 'P/C', 'P/FCF', 'Quick Ratio',
    'Current Ratio', 'Debt/Eq', 'LT Debt/Eq', 'SMA20', 'EPS (ttm)',
    'EPS next Y', 'EPS next Q', 'EPS this Y', 'EPS next 5Y', 'EPS past 5Y',
    'Sales past 5Y', 'Sales Q/Q', 'EPS Q/Q', 'Earnings', 'SMA50',
    'Insider Own', 'Insider Trans', 'Inst Own', 'Inst Trans', 'ROA', 'ROE',
    'ROI', 'Gross Margin', 'Oper. Margin', 'Profit Margin', 'Payout', 'SMA200',
    'Shs Outstand', 'Shs Float', 'Short Float', 'Short Ratio', 'Target Price',
    '52W Range', '52W High', '52W Low', 'RSI (14)', 'Rel Volume', 'Avg Volume',
    'Volume', 'Perf Week', 'Perf Month', 'Perf Quarter', 'Perf Half Y',
    'Perf Year', 'Perf YTD', 'Beta', 'ATR', 'Volatility', 'Prev Close',
    'Price', 'Change'
]
stock_list = []
today = datetime.date.today()
todayDateTime = datetime.datetime.now()
all_stocks = b.stock_list + b.etfs
#all_stocks=[['UN',0,0,'NASDAQ',],['X',0,0,'NYSE']]
for iin in all_stocks:

api = ALPACA_REST()
ts = ALPHA_TIMESERIES()
ticker = 'SPY'
#ticker='TLT'
#ticker='QQQ'
#ticker='GLD'
#ticker='HAL'
#ticker='GUSH'
#ticker='AVCT'
#ticker='RZV'
spy = runTicker(api, ticker)
stock_info = None
spy = None
sqlcursor = SQL_CURSOR()
readType = 'full'

spy, j = ConfigTable(ticker, sqlcursor, ts, readType)
print('spy')
print(spy)

# add info
if len(spy) == 0:
    print('ERROR - empy info %s' % ticker)

spy['daily_return'] = spy['adj_close'].pct_change(periods=1) + 1
spy['openclosepct'] = (spy.close - spy.open) / spy.open + 1
spy['closeopenpct'] = (spy.open - spy.shift(1).close) / spy.shift(1).close + 1
spy['afterhourspct'] = (spy.shift(-1).open - spy.close) / spy.close + 1
spy['year'] = spy.index.year
                     yname=j,
                     saveName='earningDiff',
                     hlines=[],
                     title='earningDiff')
            MakePlot(merged_stock_earn['e_over_p_diff'],
                     merged_stock_earn[j],
                     xname='e_over_p_diff',
                     yname=j,
                     saveName='e_over_p_diff',
                     hlines=[],
                     title='e_over_p_diff')
    return merged_stock_earn


# collecting spy
sqlcursor = SQL_CURSOR()
ts = ALPHA_TIMESERIES()
j = 0

# reading in the spy data
spy, j = ConfigTable('SPY', sqlcursor, ts, readType, hoursdelay=2)
AddInfo(spy, spy, debug=debug)

# processing new earnings
connectionCal = SQL_CURSOR('earningsCalendar.db')
connectionCalv2 = SQL_CURSOR('earningsCalendarForTraining.db')
fd = ALPHA_FundamentalData()
my_3month_calendar = GetUpcomingEarnings(fd, ReDownload)
print(my_3month_calendar)
it = 0
preLoaded = []
Exemple #5
0
    except (pd.io.sql.DatabaseError, KeyError):
        print('ERROR collecting earnings history for %s' % ticker)
        pass
    if debug:
        print(stockInfoQuarter)
        print(stockInfoQuarter.dtypes)
        print(stockInfoAnnual)
        print(stockInfoAnnual.dtypes)
        print(company_overview)
        print(company_overview.dtypes)
    return stockInfoQuarter, stockInfoAnnual, company_overview


if __name__ == "__main__":
    # execute only if run as a script
    connectionCal = SQL_CURSOR('earningsCalendar.db')
    fd = ALPHA_FundamentalData()
    sqlcursor = SQL_CURSOR()
    ts = ALPHA_TIMESERIES()
    api = ALPACA_REST()
    ticker = 'MPC'
    ind_map = {}
    sec_map = {}
    doEarnings = True
    #stockInfoQuarter,stockInfoAnnual,company_overview=CollectEarnings(ticker,connectionCal)
    readType = 'full'
    j = 0
    data_points = [
        'day_return', 'day2_return', 'day3_return', 'day4_return',
        'day5_return', 'day15_return', '30d_return', '60d_return',
        '180d_return', 'volatitilty', '5d_vol', '30d_vol', '180d_vol'
Exemple #6
0
    total_table=[]    
    for i in range(0,406):
    #for i in range(0,2):        
        print(i)
        URL = 'https://finviz.com/screener.ashx?v=111\&o=industry\&r=%s' %(1+i*20)
        filename_rec='/tmp/cc%i.html' %i
        if not os.path.exists(filename_rec):
            os.system('wget -T 30 -q -O %s %s' %(filename_rec,URL))
        
        table_MN = pd.read_html(filename_rec)
        for t in table_MN:
            #print(t.columns)
            if len(t)>0 and 4 in t.columns and t.loc[0,3]=='Sector':
                t.columns = t.loc[0].tolist()
                t=t.drop(0)
                t=t.drop('No.',axis=1)
                print(t.dtypes)
                print(t)
                t.Change = pd.to_numeric(t.Change.str.rstrip('%'),errors='coerce') / 100.0
                for a in ['Market Cap','P/E','Price','Volume']:
                    t[a] = pd.to_numeric(t[a].str.strip('%').replace({'K': 'e3', 'M': 'e6','B': 'e9','T': 'e12'}, regex=True),errors='coerce',downcast='integer')
                print(t)
                if len(total_table)==0:
                    total_table = t
                else:
                    total_table = pd.concat([total_table,t])
    print(total_table.dtypes)
    sqlcursorFull = SQL_CURSOR(db_name='sectorInfo.db')
    total_table.to_sql('sectors', sqlcursorFull, index=False,if_exists='append')
#https://finviz.com/screener.ashx?v=111&f=sec_basicmaterials&r=221
                        outlist[(g['labelSupportResistance'] +
                                 g['labelTurningPoints']).replace(
                                     ' ', '_').replace('%', 'perc')] = None
        #print(outlist)
        df = pd.DataFrame([outlist])
        df['Date'] = datetime.datetime.strftime(yesterday, '%Y-%m-%d')
        df['Date'] = pd.to_datetime(df['Date'])
        df = df.set_index('Date')
        print(df)
        LoadData(df, sqlcursorExtra, tableName=tableName)
        return outlist


if __name__ == "__main__":
    # execute only if run as a script
    sqlcursor = SQL_CURSOR(db_name='stocksPerfHistory.db')

    #MMOH -> NYSE
    #200 dma S&P 500
    total_table_top_gain = collect(
        sqlcursor,
        URLin='https://www.barchart.com/stocks/quotes/\$S5TH/cheat-sheet',
        tableName='SPY200MA')
    #50 dma S&P 500, S5FI
    total_table_top_gain = collect(
        sqlcursor,
        URLin='https://www.barchart.com/stocks/quotes/\$S5FI/cheat-sheet',
        tableName='SPY50MA')
    #100 dma S&P 500, S5OH
    total_table_top_gain = collect(
        sqlcursor,
from ReadData import ALPACA_REST,runTicker,ConfigTable,ALPHA_TIMESERIES,GetTimeSlot,SQL_CURSOR
import sys
import sqlite3
ts = ALPHA_TIMESERIES()
sqlcursor = SQL_CURSOR()
sc = sqlcursor.cursor()
doClean=False
doReload=False

ticker='DUG'
daily_prices,j    = ConfigTable(ticker, sqlcursor,ts,'full',hoursdelay=18)
daily_prices_365d = GetTimeSlot(daily_prices, days=365)
split_dates = daily_prices_365d[daily_prices_365d.splitcoef!=1.0]
if len(split_dates)>0:
    print(split_dates)
#print(daily_prices.to_string())
#sc.execute('DROP TABLE DUG')

#list_of_tables = 
table_names = sc.execute("SELECT name from sqlite_master WHERE type ='table' AND name NOT LIKE 'sqlite_%';").fetchall()

print("tables: %s" %len(table_names))

#splitID = sc.execute('SELECT COUNT(splitcoef) from DUG WHERE splitcoef!=1.0 AND Date>2021-01-23').fetchall()[0][0]
splitID = sc.execute("SELECT COUNT(splitcoef) from SPY WHERE splitcoef!=1.0 AND Date>'2021-01-23'").fetchall()[0][0]
#splitID = sc.execute("SELECT * from DUG WHERE splitcoef!=1.0 AND Date>'2021-01-23'").fetchall()[0][0]
splitIDl = sc.execute("SELECT * from DUG WHERE splitcoef!=1.0 AND Date>'2021-01-23'").fetchall()[0]
print(splitID)
print(splitIDl)

# create a list to reload
Exemple #9
0
def GenerateSignal(ticker,
                   out_file_name='out_bull_instructions.csv',
                   price_targets=[]):
    connectionCal = SQL_CURSOR('earningsCalendarv2.db')
    fd = ALPHA_FundamentalData()
    sqlcursor = SQL_CURSOR()
    ts = ALPHA_TIMESERIES()
    api = ALPACA_REST()

    stockInfoQuarter, stockInfoAnnual, company_overview = CollectEarnings(
        ticker, connectionCal)

    # annual balance sheet
    balance_sheet_annual = fd.get_balance_sheet_annual(ticker)[0]
    balance_sheet_annual['fiscalDateEnding'] = pd.to_datetime(
        balance_sheet_annual['fiscalDateEnding'], errors='coerce')
    for d in balance_sheet_annual.columns:
        if d not in ['fiscalDateEnding', 'totalAssets']:
            balance_sheet_annual[d] = pd.to_numeric(balance_sheet_annual[d],
                                                    errors='coerce')
    # quarterly income statement
    income_statement_quarterly = fd.get_income_statement_quarterly(ticker)[0]
    for d in income_statement_quarterly.columns:
        if d not in ['fiscalDateEnding', 'reportedCurrency']:
            income_statement_quarterly[d] = pd.to_numeric(
                income_statement_quarterly[d], errors='coerce')
    for d in ['fiscalDateEnding']:
        income_statement_quarterly[d] = pd.to_datetime(
            income_statement_quarterly[d], errors='coerce')
    if debug:
        print(income_statement_quarterly)
        print(income_statement_quarterly.dtypes)

    tstock_info, j = ConfigTable(ticker, sqlcursor, ts, 'full')
    spy, j = ConfigTable('SPY', sqlcursor, ts, 'compact')
    #print(spy.columns)
    est = pytz.timezone('US/Eastern')
    today = datetime.now(tz=est) + maindatetime.timedelta(minutes=-40)
    #today = datetime.utcnow() + maindatetime.timedelta(minutes=-30)
    d1 = today.strftime("%Y-%m-%dT%H:%M:%S-04:00")
    five_days = (
        today +
        maindatetime.timedelta(days=-7)).strftime("%Y-%m-%dT%H:%M:%S-04:00")
    minute_prices = []
    ntry = 0
    while ntry < 3:
        try:
            minute_prices = runTicker(api,
                                      ticker,
                                      timeframe=TimeFrame.Minute,
                                      start=five_days,
                                      end=d1)
            break
        except (requests.exceptions.ConnectionError):
            ntry += 1
    # may want to restrict to NYSE open times
    try:
        spy = AddInfo(spy, spy)
        tstock_info = AddInfo(tstock_info, spy, AddSupport=True)
    except (ValueError, KeyError):
        print('Error processing adding info %s' % ticker)

    recent_quotes = getQuotes(api, ticker)
    if debug:
        print(tstock_info[[
            'adj_close', 'sma20', 'sma20cen', 'vwap10cen', 'vwap10'
        ]][50:-10])
    earn = Earnings(ticker, income_statement_quarterly, company_overview,
                    balance_sheet_annual, stockInfoQuarter, stockInfoAnnual,
                    tstock_info, minute_prices, recent_quotes)
    #earn.BuildPDF()
    earn.WriteCSV(out_file_name, price_targets)
Exemple #10
0
    recent_quotes = getQuotes(api, ticker)
    if debug:
        print(tstock_info[[
            'adj_close', 'sma20', 'sma20cen', 'vwap10cen', 'vwap10'
        ]][50:-10])
    earn = Earnings(ticker, income_statement_quarterly, company_overview,
                    balance_sheet_annual, stockInfoQuarter, stockInfoAnnual,
                    tstock_info, minute_prices, recent_quotes)
    #earn.BuildPDF()
    earn.WriteCSV(out_file_name, price_targets)


if __name__ == "__main__":
    # execute only if run as a script
    connectionCal = SQL_CURSOR('earningsCalendarv2.db')
    fd = ALPHA_FundamentalData()
    sqlcursor = SQL_CURSOR()
    ts = ALPHA_TIMESERIES()
    api = ALPACA_REST()
    ticker = 'MPC'
    ticker = 'RIOT'
    ticker = 'X'
    ticker = 'HZO'
    ticker = 'WOOF'
    #ticker='GOOGL'
    #ticker='F'
    stockInfoQuarter, stockInfoAnnual, company_overview = CollectEarnings(
        ticker, connectionCal)

    # annual balance sheet
Exemple #11
0
from ReadData import SQL_CURSOR
import sqlite3
s = SQL_CURSOR()
sc = s.cursor()

table_names = sc.execute(
    "SELECT name from sqlite_master WHERE type ='table' AND name NOT LIKE 'sqlite_%';"
).fetchall()
for tname in table_names:
    #print(tname[0])
    if tname[0].count('-'):
        continue
    try:
        #print(sc.execute('SELECT MIN(rowid) from SPY GROUP BY Date').fetchall())
        distin = sc.execute('SELECT COUNT(DISTINCT Date) from %s' %
                            tname[0]).fetchall()[0][0]
        allD = sc.execute('SELECT COUNT(Date) from  %s' %
                          tname[0]).fetchall()[0][0]
        if abs(allD - distin) > 0:
            print(distin, allD, tname[0])
            #print(sc.execute('SELECT Date from  %s' %tname[0]).fetchall())
            print(
                'DELETE FROM %s WHERE rowid NOT IN ( SELECT MIN(rowid) from  %s GROUP BY Date)'
                % (tname[0], tname[0]))
            #sc.execute('DELETE FROM %s WHERE rowid NOT IN ( SELECT MIN(rowid) from  %s GROUP BY Date)' %(tname[0],tname[0]))
            sc.execute('DROP TABLE %s' % (tname[0]))
            #print(sc.execute('SELECT COUNT( Date) from %s' %tname[0]).fetchall()[0][0])
    except sqlite3.OperationalError:
        print('Could not load!')
sc.close()
#DELETE FROM lipo
Exemple #12
0
import pickle
import base as b
import time
from scipy.stats.stats import pearsonr
import matplotlib.pyplot as plt
debug = False
draw = False
outdir = b.outdir
doStocks = True
loadFromPickle = False
loadSQL = True
readType = 'full'
import zigzag
from zigzag import *

sqlcursorShort = SQL_CURSOR(db_name='stocksShort.db')
sqlcursorExtra = SQL_CURSOR(db_name='stocksShortExtra.db')


def readShortInfo(ticker):
    stock = None
    try:
        stock = pd.read_sql('SELECT * FROM %s' % ticker,
                            sqlcursorExtra)  #,index_col='Date')
        stock['LogDate'] = pd.to_datetime(stock.LogDate.astype(str),
                                          format='%Y-%m-%d')
        stock['LogDate'] = pd.to_datetime(stock['LogDate'])
        stock = stock.set_index('LogDate')
        stock = stock.sort_index()
        entryShort = 0
        if len(stock) > 0:
Exemple #13
0
from Earnings import GetIncomeStatement, GetPastEarnings, GetStockOverview, GetBalanceSheetQuarterly, GetBalanceSheetAnnual
import base

import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.subplots import make_subplots

import matplotlib.dates as mdates

import pytz
import datetime
est = pytz.timezone('US/Eastern')
api = ALPACA_REST()
ts = ALPHA_TIMESERIES()
STOCK_DB_PATH = os.getenv('STOCK_DB_PATH')
sqlcursor = SQL_CURSOR('%s/stocksAV.db' % STOCK_DB_PATH)

matplotlib.use("agg")
sns.set_style('darkgrid')

_lock = RendererAgg.lock


def clear_form():
    st.session_state["tickerKey"] = "Select"


def FitWithBand(my_index,
                arr_prices,
                doMarker=True,
                ticker='X',