def test_conf_level_within_zero_one_bounds():
    ee = [0, 0, 0]
    N = 1
    num_resamples = 2
    conf_level_too_low = -1
    compute_mu_star_confidence(ee, N, num_resamples, conf_level_too_low)
    conf_level_too_high = 2
    compute_mu_star_confidence(ee, N, num_resamples, conf_level_too_high)
def test_conf_level_within_zero_one_bounds():
    ee = [0, 0, 0]
    N = 1
    num_resamples = 2
    conf_level_too_low = -1
    compute_mu_star_confidence(ee, N, num_resamples, conf_level_too_low)
    conf_level_too_high = 2
    compute_mu_star_confidence(ee, N, num_resamples, conf_level_too_high)
def test_compute_mu_star_confidence():
    '''
    Tests that compute mu_star_confidence is computed correctly
    '''
    
    ee = np.array([2.52, 2.01, 2.30, 0.66, 0.93, 1.3], dtype=np.float)
    num_trajectories = 6
    num_resamples = 1000
    conf_level = 0.95
    
    actual = compute_mu_star_confidence(ee, num_trajectories, num_resamples, conf_level)
    expected = 0.5
    assert_allclose(actual, expected, atol=1e-01)
def test_compute_mu_star_confidence():
    '''
    Tests that compute mu_star_confidence is computed correctly
    '''

    ee = np.array([2.52, 2.01, 2.30, 0.66, 0.93, 1.3], dtype=float)
    num_trajectories = 6
    num_resamples = 1000
    conf_level = 0.95

    actual = compute_mu_star_confidence(ee, num_trajectories, num_resamples,
                                        conf_level)
    expected = 0.5
    assert_allclose(actual, expected, atol=1e-01)