pass if( configData == True ): print "config paths ready" else: print "config paths failed" exit() print dataPath print modelPath print participantList # Creates a SAMpy object mySAMpy = SAMDriver_faces(True, imgH = 400, imgW = 400, imgHNew = 200, imgWNew = 200,inputImagePort="/visionDriver/image:o") # Specification of the experiment number experiment_number = 45 # Location of face data #root_data_dir="/home/icub/dataDump/actionFilm" root_data_dir=dataPath # Image format image_suffix=".ppm" # Array of participants to be recognised #participant_index=('Andreas','Uriel','Tony','Daniel') participant_index=participantList # Poses used during the data collection pose_index=['Seg'] # Use a subset of the data for training
# Hack: Sometimes the participant list is returned as a list of letters, instead of names. # Check if this is the case and, if yes, fix. if participantList.index(","): participantList = participantList[:].split(',') print dataPath print modelPath print participantList imgHNew = 200 imgWNew = 200 # Creates a SAMpy object mySAMpy = SAMDriver_faces(True, imgH=400, imgW=400, imgHNew=imgHNew, imgWNew=imgWNew, inputImagePort="/visionDriver/image:o") # Specification of the experiment number experiment_number = 1 #45 # Location of face data #root_data_dir="/home/icub/dataDump/actionFilm" root_data_dir = dataPath # Image format image_suffix = ".ppm" # Array of participants to be recognised #participant_index=('Andreas','Uriel','Tony','Daniel') participant_index = participantList # Poses used during the data collection