Exemple #1
0
    def evaluate(self, stdResiduals:float=0.1, relError:float=0.1,
          endTime:float=10.0, numPoint:int=30,
          fractionParameterDeviation:float=0.5,
          numIteration=NUM_BOOTSTRAP_ITERATION):
        """
        Evaluates model fitting accuracy and bootstrapping for model
 
        Parameters
        ----------
        stdResiduals: Standard deviations of variable used in constructing reiduals
        relError: relative error of parameter used in evaluation
        endTime: ending time of the simulation
        numPoint: number of points in the simulatin
        fractionParameterDeviation: fractional amount that the parameter can vary
        """
        # Construct synthetic observations
        if self.selectedColumns is None:
            data = self.roadRunner.simulate(0, endTime, numPoint)
        else:
            allColumns = list(self.selectedColumns)
            if not TIME in allColumns:
                allColumns.append(TIME)
            data = self.roadRunner.simulate(0, endTime, numPoint, allColumns)
        bracketTime = "[%s]" % TIME
        if bracketTime in data.colnames:
            # Exclude any column named '[time]'
            idx = data.colnames.index(bracketTime)
            dataArr = np.delete(data, idx, axis=1)
            colnames = list(data.colnames)
            colnames.remove(bracketTime)
            colnames = [s[1:-1] if s != TIME else s for s in colnames]
            simTS = NamedTimeseries(array=dataArr, colnames=colnames)
        else:
            simTS = NamedTimeseries(namedArray=data)
        synthesizer = ObservationSynthesizerRandomErrors(
              fittedTS=simTS, std=stdResiduals)
        observedTS = synthesizer.calculate()
        # Construct the parameter ranges
        parameterDct = {}
        for name in self.parameterValueDct.keys():
            lower = self.parameterValueDct[name]*(1 - fractionParameterDeviation)
            upper = self.parameterValueDct[name]*(1 + fractionParameterDeviation)
            value = np.random.uniform(lower, upper)
            parameterDct[name] = (lower, upper, value)
        # Create the fitter
        fitter = ModelFitter(self.roadRunner, observedTS,
              selectedColumns=self.selectedColumns, parameterDct=parameterDct,
              **self.kwargs)
        msg = "Fitting the parameters %s" % str(self.parameterValueDct.keys())
        self.logger.result(msg)
        # Evaluate the fit
        fitter.fitModel()
        self._recordResult(fitter.params, relError, self.fitModelResult)
        # Evaluate bootstrap
        fitter.bootstrap(numIteration=numIteration)
        if fitter.bootstrapResult is not None:
            if fitter.bootstrapResult.numSimulation > 0:
                self._recordResult(fitter.bootstrapResult.params,
                      relError, self.bootstrapResult)
Exemple #2
0
    def _init(self, numFold=3, numModel=NUM_MODEL):
        """
        Initializes the test instance variables for a single fold.

        Parameters
        ----------
        numFold: int
        numModel: int
        """
        self.numModel = numModel
        self.observedTS = NamedTimeseries(th.TEST_DATA_PATH)
        numPoint = len(self.observedTS)
        testIdxs = [n for n in range(numPoint) if n % numFold == 0]
        trainIdxs = [n for n in range(numPoint) if n % numFold != 0]
        self.modelNames = MODEL_NAMES[0:self.numModel]
        self.trainTS = self.observedTS[trainIdxs]
        self.testTS = self.observedTS[testIdxs]
        self.modelSpecifications = mkRepeatedList(th.ANTIMONY_MODEL,
                                                  self.numModel)
        self.trainTSCol = mkRepeatedList(self.testTS, self.numModel)
        self.testTSDct = {n: self.testTS for n in self.modelNames}
        self.parameterNames = list(th.PARAMETER_DCT.keys())
        self.parameterNamesCollection = mkRepeatedList(self.parameterNames,
                                                       self.numModel)
        self.suiteFitter = mkSuiteFitter(self.modelSpecifications,
                                         self.trainTSCol,
                                         self.parameterNamesCollection,
                                         modelNames=self.modelNames)
        self.wrapper = SuiteFitterWrapper(self.suiteFitter, self.testTSDct)
Exemple #3
0
 def testPlotSingle5(self):
     if IGNORE_TEST:
         return
     timeseries = self.timeseries.subsetColumns(["S1"])
     dct = {}
     indices = [i for i in range(len(timeseries)) if i % 4 == 0]
     for col in timeseries.allColnames:
         dct[col] = timeseries[col][indices]
     df = pd.DataFrame(dct)
     meanTS = NamedTimeseries(dataframe=df)
     meanTS[meanTS.colnames] = 1.1 * meanTS[meanTS.colnames]
     stdTS = meanTS.copy()
     for col in meanTS.colnames:
         stdTS[col] = 1
     #
     self.plotter.plotTimeSingle(timeseries,
                                 timeseries2=self.timeseries,
                                 meanTS=meanTS,
                                 stdTS=stdTS,
                                 marker=[None, 'o', "^"],
                                 color=["b", "r", "g"])
     #
     self.plotter.plotTimeSingle(timeseries, meanTS=meanTS, stdTS=stdTS)
     #
     self.plotter.plotTimeSingle(timeseries,
                                 timeseries2=self.timeseries,
                                 marker='*')
Exemple #4
0
def mkTimeseries(length: int,
                 colnames: typing.List[str],
                 isRandom: bool = False) -> NamedTimeseries:
    """
    Creates a time series of the desired shape.
 
    Parameters
    ----------
    length: number of time periods
    colnames: names of the columns, excluding TIME
    isRandom: generate uniform random numbers
    
    Returns
    -------
    NamedTimeseries
    """
    num_col = len(colnames)
    if isRandom:
        arr = np.random.random(num_col * length)
    else:
        arr = np.array(range(num_col * length))
    matrix = np.reshape(arr, (length, len(colnames)))
    timeseries = NamedTimeseries(array=matrix, colnames=colnames)
    timeseries[TIME] = np.array(range(length))
    return timeseries
    def testCopyExisting(self):
        if IGNORE_TEST:
            return
        timeseries = NamedTimeseries(timeseries=self.timeseries)

        #
        def checkVector(attribute):
            length = len(self.timeseries.__getattribute__(attribute))
            trues = [
                timeseries.__getattribute__(attribute)[k] ==
                self.timeseries.__getattribute__(attribute)[k]
                for k in range(length)
            ]
            self.assertTrue(all(trues))

        def checkMatrix(attribute):
            trues = []
            for rowIdx, row in enumerate(
                    timeseries.__getattribute__(attribute)):
                for colIdx, val in enumerate(row):
                    trues.append(val == self.timeseries.__getattribute__(
                        attribute)[rowIdx, colIdx])
            self.assertTrue(all(trues))

        #
        for variable in ["start", "end"]:
            self.assertEqual(timeseries.__getattribute__(variable),
                             self.timeseries.__getattribute__(variable))
        for variable in ["colnames"]:
            checkVector(variable)
        for variable in ["values"]:
            checkMatrix(variable)
Exemple #6
0
 def testWolfBug(self):
     if IGNORE_TEST:
         return
     trueParameterDct = {
         "J1_n": 4,
         "J4_kp": 76411,
         "J5_k": 80,
         "J6_k": 9.7,
         "J9_k": 28,
     }
     parametersToFit = [
         SBstoat.Parameter("J1_n", lower=1, value=1, upper=8),  # 4
         SBstoat.Parameter("J4_kp", lower=3600, value=36000,
                           upper=150000),  #76411
         SBstoat.Parameter("J5_k", lower=10, value=10, upper=160),  # 80
         SBstoat.Parameter("J6_k", lower=1, value=1, upper=10),  # 9.7
         SBstoat.Parameter("J9_k", lower=1, value=50, upper=50),  # 28
     ]
     ts = NamedTimeseries(csvPath=WOLF_DATA)
     methods = []
     for optName in ["differential_evolution", "leastsq"]:
         methods.append(SBstoat.OptimizerMethod(optName, {cn.MAX_NFEV: 10}))
     fitter = ModelFitter(WOLF_MODEL,
                          ts,
                          parametersToFit=parametersToFit,
                          fitterMethods=methods)
     fitter.fitModel()
     for name in [p.name for p in parametersToFit]:
         expected = trueParameterDct[name]
         actual = fitter.params.valuesdict()[name]
         self.assertLess(np.abs(np.log10(expected) - np.log10(actual)), 1.5)
         self.assertTrue(name in fitter.reportFit())
 def testConstructorNamedArray(self):
     if IGNORE_TEST:
         return
     namedArray = self.model.simulate(0, 100, 30)
     ts = NamedTimeseries(namedArray=namedArray)
     self.assertTrue(
         namedTimeseries.arrayEquals(namedArray.flatten(),
                                     ts.values.flatten()))
Exemple #8
0
    def runSimulation(cls, **kwargs):
        """
        Runs a simulation. Defaults to parameter values in the simulation.
        Returns a NamedTimeseries.

        Return
        ------
        NamedTimeseries (or None if fail to converge)
        """
        return NamedTimeseries(namedArray=cls.runSimulationNumpy(**kwargs))
 def testToPandas(self):
     if IGNORE_TEST:
         return
     df = self.timeseries.to_dataframe()
     timeseries = NamedTimeseries(dataframe=df)
     diff = set(df.columns).symmetric_difference(timeseries.colnames)
     self.assertEqual(len(diff), 0)
     total = sum(timeseries.values.flatten() -
                 self.timeseries.values.flatten())
     self.assertTrue(np.isclose(total, 0))
    def testConstructor2(self):
        if IGNORE_TEST:
            return
        COLNAMES = [TIME, "S1", "S2"]

        def test(timeseries, colnames=COLNAMES):
            for name in colnames:
                self.assertTrue(
                    np.isclose(sum(timeseries[name] - self.timeseries[name]),
                               0))

        #
        newTS = NamedTimeseries(colnames=COLNAMES,
                                array=self.timeseries[COLNAMES])
        test(newTS)
        # Check can use different cases for TIME
        newTS = NamedTimeseries(colnames=["Time", "S1", "S2"],
                                array=self.timeseries[COLNAMES])
        test(newTS)
Exemple #11
0
    def runSimulationDF(cls, **kwargs):
        """
        Runs a simulation. Defaults to parameter values in the simulation.
        Returns a NamedTimeseries.

        Return
        ------
        pd.DataFrame
        """
        fittedTS = NamedTimeseries(namedArray=cls.runSimulationArr(**kwargs))
        return fittedTS.to_dataframe()
 def test(values, reference):
     df = pd.DataFrame({TIME: TIMES, VALUE: values})
     ts = NamedTimeseries(dataframe=df)
     results = ts.getTimesForValue(VALUE, reference)
     for time in results:
         idx1 = int(time)
         idx2 = idx1 + 1
         small = min(ts[VALUE][idx1], ts[VALUE][idx2])
         large = max(ts[VALUE][idx1], ts[VALUE][idx2])
         self.assertLessEqual(small, reference)
         self.assertGreaterEqual(large, reference)
Exemple #13
0
def _mkTimeseries(numRow=NUM_ROW, numCol=NUM_COL, std=STD):
    colnames = ["V%d" % d for d in range(NUM_COL)]
    allColnames = list(colnames)
    allColnames.insert(0, TIME)
    timeArr = np.array(range(NUM_ROW))
    timeArr = np.reshape(timeArr, (NUM_ROW, 1))

    #
    def addTime(arr):
        newArr = np.concatenate([timeArr, arr], axis=1)
        return newArr

    #
    residualsTS = NamedTimeseries(array=addTime(
        np.random.normal(0, std, (numRow, numCol))),
                                  colnames=allColnames)
    fittedTS = NamedTimeseries(array=addTime(
        np.random.normal(MEAN, 10 * std, (numRow, numCol))),
                               colnames=allColnames)
    fittedTS[colnames] = np.floor(fittedTS[colnames])
    observedTS = fittedTS.copy()
    observedTS[colnames] += residualsTS[colnames]
    return observedTS, fittedTS, residualsTS
Exemple #14
0
 def _init(self, numModel=NUM_MODEL):
     self.numModel = numModel
     self.observedTS = NamedTimeseries(th.TEST_DATA_PATH)
     self.modelNames = MODEL_NAMES[0:numModel]
     self.modelSpecifications = mkRepeatedList(th.ANTIMONY_MODEL, numModel)
     self.datasets = mkRepeatedList(self.observedTS, numModel)
     self.parameterNames = list(th.PARAMETER_DCT.keys())
     self.parameterNamesCollection = mkRepeatedList(self.parameterNames,
                                                    numModel)
     self.suiteFitter = mkSuiteFitter(self.modelSpecifications,
                                      self.datasets,
                                      self.parameterNamesCollection,
                                      modelNames=self.modelNames,
                                      fitterMethods=METHODS)
Exemple #15
0
def mkDataSourceDct(filePath,
                    colName,
                    dataSourceNames=None,
                    isTimeColumns=True):
    """
    Creates a dataSource dictionary as required by ModelStudy from
    a file whose columns are observed values of the same variable.

    Parameters
    ----------
    filepath: str
        path to the file containing columns of observed values
    colName: str
        Name of the simulation variable to fit to observed values
    dataSourceNames: list-str
        Names for the instances of observedValues
        if None, then column headers are used (or column number)
    isTimeColumns: boolean
        Columns are time. If False, rows are time.

    Returns
    -------
    dict: key is instance name; value is NamedTimeseries
    """
    dataDF = pd.read_csv(filePath, header=None)
    if isTimeColumns:
        dataDF = dataDF.transpose()
    if dataSourceNames is not None:
        # Use instance names
        if len(dataSourceNames) != len(dataDF.columns):
            msg = "Number of instances is not equal to the number of columns"
            raise ValueError(msg)
        dct = {k: v for k, v in zip(dataDF.columns, dataSourceNames)}
        dataDF = dataDF.rename(columns=dct)
    # Ensure that column names are strings
    dct = {k: str(k) for k in dataDF.columns}
    dataDF = dataDF.rename(columns=dct)
    dataDF.index.name = "time"
    # Construct the data source dictionary
    dataDF.index = range(len(dataDF))
    dataDF.index.name = TIME
    dataTS = NamedTimeseries(dataframe=dataDF)
    dataSourceDct = {d: dataTS.subsetColumns([d]) for d in dataDF.columns}
    dataSourceDct = {
        d: dataSourceDct[d].rename(d, colName)
        for d in dataSourceDct.keys()
    }
    #
    return dataSourceDct
Exemple #16
0
    def simulate(self, **kwargs):
        """
        Runs a simulation. Defaults to parameter values in the simulation.

        Parameters
       ----------
        params: lmfit.Parameters
        startTime: float
        endTime: float
        numPoint: int

        Return
        ------
        NamedTimeseries
        """
        fixedArr = self._simulateNumpy(**kwargs)
        return NamedTimeseries(namedArray=fixedArr)
Exemple #17
0
    def _transformFittedTS(self, data):
        """
        Updates the fittedTS taking into account required transformations.
 
        Parameters
        ----------
        data: np.ndarray
 
        Results
        ----------
        NamedTimeseries
        """
        colnames = list(self.selectedColumns)
        colnames.insert(0, TIME)
        fittedTS = NamedTimeseries(array=data[:, :], colnames=colnames)
        if self.fittedDataTransformDct is not None:
            for column, func in self.fittedDataTransformDct.items():
                if func is not None:
                    fittedTS[column] = func(fittedTS)
        return fittedTS
 def testExamples(self):
     if IGNORE_TEST:
         return
     # Create from file
     timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH)
     # NamedTimeseries can use len function
     length = len(timeseries)  # number of rows
     # Extract the numpy array values using indexing
     timeValues = timeseries["time"]
     s1Values = timeseries["S1"]
     # Get the start and end times
     startTime = timeseries.start
     endTime = timeseries.end
     # Create a new time series that subsets the variables of the old one
     colnames = ["time", "S1", "S2"]
     newTS = mkNamedTimeseries(colnames, timeseries[colnames])
     # Create a new timeseries that excludes time 0
     ts2 = timeseries[1:]
     # Create a new column variable
     timeseries["S8"] = timeseries["time"]**2 + 3 * timeseries["S1"]
     timeseries["S9"] = 10  # Assign a constant to all rows
Exemple #19
0
 def testWolfBug(self):
     if IGNORE_TEST:
         return
     fullDct = {
        #"J1_n": (1, 1, 8),  # 4
        #"J4_kp": (3600, 36000, 150000),  #76411
        #"J5_k": (10, 10, 160),  # 80
        #"J6_k": (1, 1, 10),  # 9.7
        "J9_k": (1, 50, 50),   # 28
        }
     for parameter in fullDct.keys():
         logger = Logger(logLevel=LEVEL_MAX)
         logger = Logger()
         ts = NamedTimeseries(csvPath=WOLF_DATA)
         parameterDct = {parameter: fullDct[parameter]}
         fitter = ModelFitter(WOLF_MODEL, ts[0:100],
               parameterDct=parameterDct,
               logger=logger, fitterMethods=[
                      "differential_evolution", "leastsq"]) 
         fitter.fitModel()
         self.assertTrue("J9_k" in fitter.reportFit())
Exemple #20
0
    def copy(self, isKeepLogger=False, isKeepOptimizer=False, **kwargs):
        """
        Creates a copy of the model fitter, overridding any argument
        that is not None.
        Preserves the user-specified settings and the results
        of bootstrapping.
        
        Parameters
        ----------
        isKeepLogger: bool
        isKeepOptimizer: bool
        kwargs: dict
            arguments to override in copy
        
        Returns
        -------
        ModelFitter
        """
        def setValues(names):
            """
            Sets the value for a list of names.
   
            Parameters
            ----------
            names: list-str
           
            Returns
            -------
            list-object
            """
            results = []
            for name in names:
                altName = "_%s" % name
                if name in kwargs.keys():
                    results.append(kwargs[name])
                elif name in self.__dict__.keys():
                    results.append(self.__dict__[name])
                elif altName in self.__dict__.keys():
                    results.append(self.__dict__[altName])
                else:
                    raise RuntimeError("%s: not found" % name)
            return results

        #
        # Get the positional and keyword arguments
        inspectResult = inspect.getfullargspec(ModelFitterCore.__init__)
        allArgNames = inspectResult.args[1:]  # Ignore 'self'
        if inspectResult.defaults is None:
            numKwarg = 0
        else:
            numKwarg = len(inspectResult.defaults)
        numParg = len(allArgNames) - numKwarg  # positional arguments
        pargNames = allArgNames[:numParg]
        kwargNames = allArgNames[numParg:]
        # Construct the arguments
        callPargs = setValues(pargNames)
        callKwargValues = setValues(kwargNames)
        callKwargs = {n: v for n, v in zip(kwargNames, callKwargValues)}
        if numKwarg > 0:
            # Adjust model specification
            modelSpecificationIdx = pargNames.index("modelSpecification")
            observedDataIdx = pargNames.index("observedData")
            modelSpecification = callPargs[modelSpecificationIdx]
            observedTS = NamedTimeseries(callPargs[observedDataIdx])
            selectedColumns = callKwargs["selectedColumns"]
            if not isinstance(modelSpecification, str):
                try:
                    modelSpecification = self.modelSpecification.getAntimony()
                    callPargs[modelSpecificationIdx] = modelSpecification
                    observedTS, selectedColumns = self._adjustNames(
                        modelSpecification, observedTS)
                    callPargs[observedDataIdx] = observedTS
                    callKwargs["selectedColumns"] = selectedColumns
                except Exception as err:
                    self.logger.error(
                        "Problem wth conversion to Antimony. Details:", err)
                    raise ValueError("Cannot proceed.")
            #
            if isKeepLogger:
                callKwargs["logger"] = self.logger
        if numParg < 2:
            callPargs = [None, None]
        newModelFitter = self.__class__(*callPargs, **callKwargs)
        if self.optimizer is not None:
            if isKeepOptimizer:
                newModelFitter.optimizer = self.optimizer.copyResults()
        if self.bootstrapResult is not None:
            newModelFitter.bootstrapResult = self.bootstrapResult.copy()
        return newModelFitter
Exemple #21
0
def getTimeseries():
    return NamedTimeseries(TEST_DATA_PATH)
Exemple #22
0
    def runSimulation(
            cls,
            parameters=None,
            roadrunner=None,
            startTime=0,
            endTime=5,
            numPoint=30,
            selectedColumns=None,
            returnDataFrame=True,
            _logger=Logger(),
            _loggerPrefix="",
    ):
        """
        Runs a simulation. Defaults to parameter values in the simulation.

        Parameters
       ----------
        roadrunner: ExtendedRoadRunner/str
            Roadrunner model
        parameters: lmfit.Parameters
            lmfit parameters
        startTime: float
            start time for the simulation
        endTime: float
            end time for the simulation
        numPoint: int
            number of points in the simulation
        selectedColumns: list-str
            output columns in simulation
        returnDataFrame: bool
            return a DataFrame
        _logger: Logger
        _loggerPrefix: str


        Return
        ------
        NamedTimeseries (or None if fail to converge)
        """
        if isinstance(roadrunner, str):
            roadrunner = cls.initializeRoadrunnerModel(roadrunner)
        else:
            roadrunner.reset()
        if parameters is not None:
            # Parameters have been specified
            cls.setupModel(roadrunner, parameters, logger=_logger)
        # Do the simulation
        if selectedColumns is not None:
            newSelectedColumns = list(selectedColumns)
            if TIME not in newSelectedColumns:
                newSelectedColumns.insert(0, TIME)
            try:
                data = roadrunner.simulate(startTime, endTime, numPoint,
                                           newSelectedColumns)
            except Exception as err:
                _logger.error("Roadrunner exception: ", err)
                data = None
        else:
            try:
                data = roadrunner.simulate(startTime, endTime, numPoint)
            except Exception as err:
                _logger.exception("Roadrunner exception: %s", err)
                data = None
        if data is None:
            return data
        fittedTS = NamedTimeseries(namedArray=data)
        if returnDataFrame:
            result = fittedTS.to_dataframe()
        else:
            result = fittedTS
        return result
 def setUp(self):
     self.timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH)
     self.model = te.loada(ANTIMONY_MODEL)
Exemple #24
0
    def simulate(self,
                 params=None,
                 startTime=None,
                 endTime=None,
                 numPoint=None):
        """
        Runs a simulation. Defaults to parameter values in the simulation.

        Parameters
       ----------
        params: lmfit.Parameters
        startTime: float
        endTime: float
        numPoint: int

        Return
        ------
        NamedTimeseries
        """
        def set(default, parameter):
            # Sets to default if parameter unspecified
            if parameter is None:
                return default
            else:
                return parameter

        ##V
        block = Logger.join(self._loggerPrefix, "fitModel.simulate")
        guid = self.logger.startBlock(block)
        ## V
        sub1Block = Logger.join(block, "sub1")
        sub1Guid = self.logger.startBlock(sub1Block)
        startTime = set(self.observedTS.start, startTime)
        endTime = set(self.observedTS.end, endTime)
        numPoint = set(len(self.observedTS), numPoint)
        ##  V
        sub1aBlock = Logger.join(sub1Block, "sub1a")
        sub1aGuid = self.logger.startBlock(sub1aBlock)
        if self.roadrunnerModel is None:
            self._initializeRoadrunnerModel()
        self.roadrunnerModel.reset()
        ##  ^
        self.logger.endBlock(sub1aGuid)
        ##  V
        sub1bBlock = Logger.join(sub1Block, "sub1b")
        sub1bGuid = self.logger.startBlock(sub1bBlock)
        if params is not None:
            # Parameters have been specified
            self._setupModel(params)
        ##  ^
        self.logger.endBlock(sub1bGuid)
        # Do the simulation
        selectedColumns = list(self.selectedColumns)
        if not TIME in selectedColumns:
            selectedColumns.insert(0, TIME)
        ## ^
        self.logger.endBlock(sub1Guid)
        ## V
        roadrunnerBlock = Logger.join(block, "roadrunner")
        roadrunnerGuid = self.logger.startBlock(roadrunnerBlock)
        data = self.roadrunnerModel.simulate(startTime, endTime, numPoint,
                                             selectedColumns)
        self.logger.endBlock(roadrunnerGuid)
        ## ^
        # Select the required columns
        ## V
        sub2Block = Logger.join(block, "sub2")
        sub2Guid = self.logger.startBlock(sub2Block)
        fittedTS = NamedTimeseries(namedArray=data)
        self.logger.endBlock(sub2Guid)
        ## ^
        self.logger.endBlock(guid)
        ##^
        return fittedTS
 def mkTimeSeries(self, values, name):
     numPoint = len(values)
     arr = np.array([range(numPoint), values])
     arr = np.resize(arr, (2, numPoint))
     arr = arr.transpose()
     return NamedTimeseries(array=arr, colnames=["time", name])
 def testMissingData(self):
     if IGNORE_TEST:
         return
     with self.assertRaises(ValueError):
         timeseries = NamedTimeseries(csvPath=TEST_BAD_DATA_PATH)
Exemple #27
0
 def getTS(data):
     if isinstance(data, pd.DataFrame):
         return NamedTimeseries(dataframe=data)
     return data
Exemple #28
0
 def _mkParameterDF(self, parameters=None):
     df = pd.DataFrame(self.bootstrapResult.parameterDct)
     if parameters is not None:
         df = df[parameters]
     df.index.name = TIME
     return NamedTimeseries(dataframe=df)
Exemple #29
0
 def setUp(self):
     self.timeseries = NamedTimeseries(csvPath=TEST_DATA_PATH)
     self.plotter = TimeseriesPlotter(isPlot=IS_PLOT)
Exemple #30
0
def getTimeseries():
    return NamedTimeseries(csvPath=TEST_DATA_PATH)