Exemple #1
0
class MainView(ZApplicationView):

    # MainView Constructor
    def __init__(self, title, x, y, width, height):
        super(MainView, self).__init__(title, x, y, width, height)
        self.font = QFont("Arial", 10)
        self.setFont(self.font)

        # 1 Add a labeled combobox to top dock area
        self.add_datasets_combobox()

        # 2 Add a textedit to the left pane of the center area.
        self.text_editor = QTextEdit()
        self.text_editor.setFont(self.font)
        self.text_editor.setLineWrapColumnOrWidth(600)
        self.text_editor.setLineWrapMode(QTextEdit.FixedPixelWidth)

        self.description = QTextEdit()
        self.description.setFont(self.font)
        self.description.setLineWrapColumnOrWidth(600)
        self.description.setLineWrapMode(QTextEdit.FixedPixelWidth)

        # 3 Add a tabbled_window to the right pane of the center area.
        self.tabbed_window = ZTabbedWindow(self, 0, 0, width / 2, height)

        # 4 Add a figure_view to the tabbed_window
        self.figure_view = ZScalableScrolledFigureView(self, 0, 0, width / 2,
                                                       height)

        self.add(self.text_editor)
        self.add(self.tabbed_window)
        self.tabbed_window.add("Description", self.description)
        self.tabbed_window.add("Importances", self.figure_view)
        self.figure_view.hide()

        self.show()

    def add_datasets_combobox(self):
        self.dataset_id = Boston
        self.datasets_combobox = ZLabeledComboBox(self, "Datasets",
                                                  Qt.Horizontal)
        self.datasets_combobox.setFont(self.font)

        # We use the following datasets of sklearn to test XGBRegressor.
        self.datasets = {"Boston": Boston, "Diabetes": Diabetes}
        title = self.get_title()
        self.setWindowTitle("Boston" + " - " + title)

        self.datasets_combobox.add_items(self.datasets.keys())
        self.datasets_combobox.add_activated_callback(self.datasets_activated)
        self.datasets_combobox.set_current_text(self.dataset_id)

        self.start_button = ZPushButton("Start", self)
        self.clear_button = ZPushButton("Clear", self)

        self.start_button.setFont(self.font)
        self.clear_button.setFont(self.font)

        self.start_button.add_activated_callback(self.start_button_activated)
        self.clear_button.add_activated_callback(self.clear_button_activated)

        self.datasets_combobox.add(self.start_button)
        self.datasets_combobox.add(self.clear_button)

        self.set_top_dock(self.datasets_combobox)

    def write(self, text):
        self.text_editor.append(text)
        self.text_editor.repaint()

    def datasets_activated(self, text):
        self.dataset_id = self.datasets[text]
        title = self.get_title()
        self.setWindowTitle(text + " - " + title)

    def start_button_activated(self, text):
        self.model = XGBRegressorModel(self.dataset_id, self)
        self.start_button.setEnabled(False)
        self.clear_button.setEnabled(False)
        try:
            self.model.run()
        except:
            pass
        self.start_button.setEnabled(True)
        self.clear_button.setEnabled(True)

    def file_new(self):
        self.text_editor.setText("")
        self.description.setText("")
        self.figure_view.hide()

        if plt.gcf() != None:
            plt.close()

    def clear_button_activated(self, text):
        self.file_new()

    def visualize(self, importances):
        self.figure_view.show()
        if plt.gcf() != None:
            plt.close()

        importances.plot(kind="barh")
        self.figure_view.set_figure(plt)
Exemple #2
0
class ZImageClassifierView(ZApplicationView):  
  # Class variables

  # ClassifierView Constructor
  def __init__(self, title, x, y, width, height, datasets={"ImageModel": 0}):
    super(ZImageClassifierView, self).__init__(title, x, y, width, height)
    self.font        = QFont("Arial", 10)
    self.setFont(self.font)
    
    self.datasets = datasets
    
    self.model_loaded = False
    
    self.class_names_set = [None, None]

    # Image filename to be classified
    self.filename     = None
    
    # Target image to be classified
    self.image       = None

    # 1 Add a labeled combobox to top dock area
    self.add_datasets_combobox()
    
    # 2 Add a textedit to the left pane of the center area.
    self.text_editor = QTextEdit()
    self.text_editor.setLineWrapColumnOrWidth(600)
    self.text_editor.setLineWrapMode(QTextEdit.FixedPixelWidth)
    self.text_editor.setGeometry(0, 0, width/2, height)
    
    # 3 Add a tabbed_window the rigth pane of the center area.
    self.tabbed_window = ZTabbedWindow(self, 0, 0, width/2, height)
    
    # 4 Add a imageview to the tabbed_window.
    self.image_view = ZScalableScrolledImageView(self, 0, 0, width/3, height/3)   
    self.tabbed_window.add("SourceImage", self.image_view)
    
    # 5 Add a test_imageview to the right pane of the center area.
    self.test_image_view = ZScalableScrolledImageView(self, 0, 0, width/3, height/3)   
    self.tabbed_window.add("TestImage", self.test_image_view)

    self.add(self.text_editor)
    self.add(self.tabbed_window)
    

  def add_datasets_combobox(self):
    datasetkey = list(self.datasets.keys())[0]
    self.dataset_id = self.datasets[datasetkey]
    print("Current combobox item {} {}".format(datasetkey, self.dataset_id))
    
    self.datasets_combobox = ZLabeledComboBox(self, "Datasets", Qt.Horizontal)
    self.datasets_combobox.setFont(self.font)
    
    title = self.get_title()
    
    self.setWindowTitle(self.__class__.__name__ + " - " + title)
    
    self.datasets_combobox.add_items(self.datasets.keys())
    self.datasets_combobox.add_activated_callback(self.datasets_activated)
    self.datasets_combobox.set_current_text(self.dataset_id)

    self.classifier_button = ZPushButton("Classify", self)
    self.classifier_button.setEnabled(False)

    self.clear_button = ZPushButton("Clear", self)
    
    self.classifier_button.add_activated_callback(self.classifier_button_activated)
    self.clear_button.add_activated_callback(self.clear_button_activated)

    self.datasets_combobox.add(self.classifier_button)
    self.datasets_combobox.add(self.clear_button)
    
    self.set_top_dock(self.datasets_combobox)


  def write(self, text):
    self.text_editor.append(text)
    self.text_editor.repaint()


  def datasets_activated(self, text):
    pass


  # Show FileOpenDialog and select an image file.
  def file_open(self):
    if self.model_loaded:
      options = QFileDialog.Options()
      filename, _ = QFileDialog.getOpenFileName(self,"FileOpenDialog", "",
                     "All Files (*);;Image Files (*.png;*jpg;*.jpeg)", options=options)
      if filename:
        self.filename = filename
        self.load_file(filename)
        self.classifier_button.setEnabled(True)
    else:
      QMessageBox.warning(self, "ImageClassifier: Weight File Missing", 
           "Please run: python RoadSignsModel.py " + str(self.dataset_id))


  def remove_alpha_channel(self, array):
    shape = array.shape
    if len(shape) ==3:
      w, h, c = shape
      if c == 4:
        #(w, h, 4) -> (w, h, 3)  
        #print("Remove the alpha channel of array")
        array = array[:,:,:3]
    return array
    

  def load_file(self, filename):
    from keras.preprocessing.image import load_img, img_to_array

    try:
      image_cropper = ZPILImageCropper(filename)
     
      # 1 Crop larget_central square region from an image of filename.
      cropped_image = image_cropper.crop_largest_central_square_region()
      
      # 2 Load an image from the cropped_fle.
      self.image_view.set_image(img_to_array(cropped_image)) 
      self.image_view.update_scale()
      self.set_filenamed_title(filename)
      
      # 3 Resize the cropped_image  
      self.image = cropped_image.resize(self.image_size)
      
      # 4 Convert the self.image to numpy ndarray and remove alpha channel.
      self.image = self.remove_alpha_channel(img_to_array(self.image))

      # 5 Set self.nadarryy to the test_image_view.
      self.test_image_view.set_image(self.image)

      # 6 Convert self.image in range[0-1.0]
      self.image = self.image.astype('float32')/255.0
      
      # 7 Expand the dimension of the self.image 
      self.image = np.expand_dims(self.image, axis=0) 
      
      #print(self.image.shape)
      
    except:
      self.write(formatted_traceback())


  def classifier_button_activated(self, text):
    self.classifier_button.setEnabled(False)    
    self.clear_button.setEnabled(False)
    try:
      self.classify()
    except:
      self.write(formatted_traceback())
      
    self.classifier_button.setEnabled(True)
    self.clear_button.setEnabled(True)


  def get_top_five(self, predictions, classes, K=5):
    pred = predictions[0]
    indices = np.argpartition(pred, -K)[-K:]
    results = []
    for i in indices:    
      results.append([pred[i], classes[i]])
    results = sorted(results, reverse=True)
    return results


  def get_class_names(self, path="./class_names.txt"):
    classes = []
    with open(path, "r") as file:
      classes = [s.strip() for s in file.readlines()]
    return classes
 

  def classify(self):
    self.write("------------------------------------------------------------")
    self.write("classify start")
    self.write(self.filename)
    prediction = self.model.predict(self.image)
    
    pred = np.argmax(prediction, axis=1)
    #self.write("Prediction: index " + str(pred))
    class_names = self.model.classes

    if pred >0 or pred <len(class_names):
      self.write("Prediction:" + class_names[int(pred)])

    self.write("classify end")


  def clear_button_activated(self, text):
    self.text_editor.setText("")
    pass