def generateParser():
     parser = argparse.ArgumentParser(
         description='Clustering of the data for data exploration.')
     Experiment.projectDatasetFeturesParser(parser)
     algos = ['Kmeans', 'GaussianMixture']
     subparsers = parser.add_subparsers(dest='algo')
     factory = ClusteringConfFactory.getFactory()
     for algo in algos:
         algo_parser = subparsers.add_parser(algo)
         factory.generateParser(algo, algo_parser)
     return parser
Exemple #2
0
 def generateParser():
     parser = argparse.ArgumentParser(
         description='Clustering of the data for data exploration.')
     Experiment.projectDatasetFeturesParser(parser)
     subparsers = parser.add_subparsers(dest='algo')
     subparsers.required = True
     factory = ClusteringConfFactory.getFactory()
     algos = factory.getAlgorithms()
     for algo in algos:
         algo_parser = subparsers.add_parser(algo)
         factory.generateParser(algo, algo_parser)
     return parser
 def generateParser():
     parser = argparse.ArgumentParser(
             description='Active Learning',
             formatter_class=argparse.RawTextHelpFormatter)
     Experiment.projectDatasetFeturesParser(parser)
     subparsers = parser.add_subparsers(dest='strategy')
     subparsers.required = True
     factory = ActiveLearningConfFactory.getFactory()
     strategies = factory.getStrategies()
     for strategy in strategies:
         strategy_parser = subparsers.add_parser(strategy)
         factory.generateParser(strategy, strategy_parser)
     return parser
Exemple #4
0
 def generateParser():
     parser = argparse.ArgumentParser(
         description='Active Learning',
         formatter_class=argparse.RawTextHelpFormatter)
     Experiment.projectDatasetFeturesParser(parser)
     strategies = [
         'Ilab', 'RandomSampling', 'UncertaintySampling', 'CesaBianchi',
         'Aladin', 'Gornitz'
     ]
     subparsers = parser.add_subparsers(dest='strategy')
     factory = ActiveLearningConfFactory.getFactory()
     for strategy in strategies:
         strategy_parser = subparsers.add_parser(strategy)
         factory.generateParser(strategy, strategy_parser)
     return parser
 def generateParser():
     parser = argparse.ArgumentParser(
         description='Learn a detection model. ' +
         'The ground-truth must be stored in annotations/ground_truth.csv.')
     Experiment.projectDatasetFeturesParser(parser)
     models = [
         'LogisticRegression', 'Svc', 'GaussianNaiveBayes', 'DecisionTree',
         'RandomForest', 'GradientBoosting'
     ]
     subparsers = parser.add_subparsers(dest='model')
     factory = ClassifierConfFactory.getFactory()
     for model in models:
         model_parser = subparsers.add_parser(model)
         factory.generateParser(model, model_parser)
     ## Add subparser for already trained model
     already_trained = subparsers.add_parser('AlreadyTrained')
     factory.generateParser('AlreadyTrained', already_trained)
     return parser
Exemple #6
0
 def generateParser():
     parser = argparse.ArgumentParser(
         description='Descriptive Statistics of the Dataset')
     Experiment.projectDatasetFeturesParser(parser)
     return parser