Exemple #1
0
 def test_dropout_WITH_PROB_ZERO(self):
     rnn = DecoderRNN(self.vocab_size, 50, 16, 0, 1, dropout_p=0)
     for param in rnn.parameters():
         param.data.uniform_(-1, 1)
     output1, _, _ = rnn()
     output2, _, _ = rnn()
     for prob1, prob2 in zip(output1, output2):
         self.assertTrue(torch.equal(prob1.data, prob2.data))
Exemple #2
0
    def test_dropout_WITH_NON_ZERO_PROB(self):
        rnn = DecoderRNN(self.vocab_size, 50, 16, 0, 1, n_layers=2, dropout_p=0.5)
        for param in rnn.parameters():
            param.data.uniform_(-1, 1)

        equal = True
        for _ in range(50):
            output1, _, _ = rnn()
            output2, _, _ = rnn()
            if not torch.equal(output1[0].data, output2[0].data):
                equal = False
                break
        self.assertFalse(equal)
Exemple #3
0
    def test_k_1(self):
        """ When k=1, the output of topk decoder should be the same as a normal decoder. """
        batch_size = 1
        eos = 1

        for _ in range(10):
            # Repeat the randomized test multiple times
            decoder = DecoderRNN(self.vocab_size, 50, 16, 0, eos)
            for param in decoder.parameters():
                param.data.uniform_(-1, 1)
            topk_decoder = TopKDecoder(decoder, 1)

            output, _, other = decoder()
            output_topk, _, other_topk = topk_decoder()

            self.assertEqual(len(output), len(output_topk))

            finished = [False] * batch_size
            seq_scores = [0] * batch_size

            for t_step, t_output in enumerate(output):
                score, _ = t_output.topk(1)
                symbols = other['sequence'][t_step]
                for b in range(batch_size):
                    seq_scores[b] += score[b].data[0]
                    symbol = symbols[b].data[0]
                    if not finished[b] and symbol == eos:
                        finished[b] = True
                        self.assertEqual(other_topk['length'][b], t_step + 1)
                        self.assertTrue(
                            np.isclose(seq_scores[b],
                                       other_topk['score'][b][0]))
                    if not finished[b]:
                        symbol_topk = other_topk['topk_sequence'][t_step][
                            b].data[0][0]
                        self.assertEqual(symbol, symbol_topk)
                        self.assertTrue(
                            torch.equal(t_output.data,
                                        output_topk[t_step].data))
                if sum(finished) == batch_size:
                    break
Exemple #4
0
    def test_k_greater_then_1(self):
        """ Implement beam search manually and compare results from topk decoder. """
        max_len = 50
        beam_size = 3
        batch_size = 1
        hidden_size = 8
        sos = 0
        eos = 1

        for _ in range(10):
            decoder = DecoderRNN(self.vocab_size, max_len, hidden_size, sos,
                                 eos)
            for param in decoder.parameters():
                param.data.uniform_(-1, 1)
            topk_decoder = TopKDecoder(decoder, beam_size)

            encoder_hidden = torch.autograd.Variable(
                torch.randn(1, batch_size, hidden_size))
            _, _, other_topk = topk_decoder(encoder_hidden=encoder_hidden)

            # Queue state:
            #   1. time step
            #   2. symbol
            #   3. hidden state
            #   4. accumulated log likelihood
            #   5. beam number
            batch_queue = [[(-1, sos, encoder_hidden[:, b, :].unsqueeze(1), 0,
                             None)] for b in range(batch_size)]
            time_batch_queue = [batch_queue]
            batch_finished_seqs = [list() for _ in range(batch_size)]
            for t in range(max_len):
                new_batch_queue = []
                for b in range(batch_size):
                    new_queue = []
                    for k in range(min(len(time_batch_queue[t][b]),
                                       beam_size)):
                        _, inputs, hidden, seq_score, _ = time_batch_queue[t][
                            b][k]
                        if inputs == eos:
                            batch_finished_seqs[b].append(
                                time_batch_queue[t][b][k])
                            continue
                        inputs = torch.autograd.Variable(
                            torch.LongTensor([[inputs]]))
                        decoder_outputs, hidden, _ = decoder.forward_step(
                            inputs, hidden, None, F.log_softmax)
                        topk_score, topk = decoder_outputs[0].data.topk(
                            beam_size)
                        for score, sym in zip(topk_score.tolist()[0],
                                              topk.tolist()[0]):
                            new_queue.append(
                                (t, sym, hidden, score + seq_score, k))
                    new_queue = sorted(new_queue,
                                       key=lambda x: x[3],
                                       reverse=True)[:beam_size]
                    new_batch_queue.append(new_queue)
                time_batch_queue.append(new_batch_queue)

            # finished beams
            finalist = [l[:beam_size] for l in batch_finished_seqs]
            # unfinished beams
            for b in range(batch_size):
                if len(finalist[b]) < beam_size:
                    last_step = sorted(time_batch_queue[-1][b],
                                       key=lambda x: x[3],
                                       reverse=True)
                    finalist[b] += last_step[:beam_size - len(finalist[b])]

            # back track
            topk = []
            for b in range(batch_size):
                batch_topk = []
                for k in range(beam_size):
                    seq = [finalist[b][k]]
                    prev_k = seq[-1][4]
                    prev_t = seq[-1][0]
                    while prev_k is not None:
                        seq.append(time_batch_queue[prev_t][b][prev_k])
                        prev_k = seq[-1][4]
                        prev_t = seq[-1][0]
                    batch_topk.append([s for s in reversed(seq)])
                topk.append(batch_topk)

            for b in range(batch_size):
                topk[b] = sorted(topk[b], key=lambda s: s[-1][3], reverse=True)

            topk_scores = other_topk['score']
            topk_lengths = other_topk['topk_length']
            topk_pred_symbols = other_topk['topk_sequence']
            for b in range(batch_size):
                precision_error = False
                for k in range(beam_size - 1):
                    if np.isclose(topk_scores[b][k], topk_scores[b][k + 1]):
                        precision_error = True
                        break
                if precision_error:
                    break
                for k in range(beam_size):
                    self.assertEqual(topk_lengths[b][k], len(topk[b][k]) - 1)
                    self.assertTrue(
                        np.isclose(topk_scores[b][k], topk[b][k][-1][3]))
                    total_steps = topk_lengths[b][k]
                    for t in range(total_steps):
                        self.assertEqual(topk_pred_symbols[t][b, k].data[0],
                                         topk[b][k][t +
                                                    1][1])  # topk includes SOS