from keras.models import model_from_yaml import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument("--which_epoch", default=200, type=int) parser.add_argument("--what_encoder", default=0, type=int) args = parser.parse_args() #load data dataset_obj = Emilya_Dataset(window_width=200, shift_step=20, sampling_interval=None, with_velocity=False, number=None, nb_valid=None, nb_test=None) test_X = dataset_obj.test_X[:, :, 1:] test_Y2 = dataset_obj.test_Y2[:] test_Y2 = convert_indices_2_onehot(test_Y2, nb_labels=8) del dataset_obj ##load encoder which_epoch = args.which_epoch encoder_name = '../encoder' + str(which_epoch) + '.yaml' with open(encoder_name, mode='r') as fl: encoder = model_from_yaml(fl) encoder.load_weights(encoder_name[:-4] + 'h5') if args.what_encoder == 0:
import sys import os root_path = os.getenv('Seq_AAE_V1') sys.path.append(root_path) from Seq_AAE_V1.datasets.dataset import Emilya_Dataset from Seq_AAE_V1.models.Seq_AAE.seq_aae_new_loss import Sequence_Adversrial_Autoencoder_with_New_Loss dataset_obj = Emilya_Dataset(window_width=200, shift_step=20, sampling_interval=None, with_velocity=False) model = Sequence_Adversrial_Autoencoder_with_New_Loss( latent_dim=50, latent_activation='tanh', latent_BN=False, hidden_dim_enc_list=[100, 100], activation_enc_list=['tanh', 'tanh'], hidden_dim_dec_list=None, activation_dec_list=None, hidden_dim_dis_list=[100, 40], activation_dis_list=['relu', 'relu'], dropout_dis_list=[0.0, 0.0], batch_size=200, max_epoch=401, optimiser_autoencoder='rmsprop', optimiser_dis='Adam', lr_autoencoder=0.001, lr_dis=0.001, decay_autoencoder=0.0, decay_dis=0.0,