Exemple #1
0
def main(args):
    if "-h" in args or len(args) < 2:
        print 'Usage: python %s {compression factor} {input file path}' % (args[0])
        exit()
    
    compression_factor = int(args[1])    
        
    input_file_path = args[2]        
    
    motes = {} # holds last reading for each mote
    
    tr = TraceReader(input_file_path)
    tw = TraceWriter("%s_compressed.%s" % (os.path.basename(input_file_path).split(".")[0], tr.file_type), tr.arff_attributes)
    
    try:
        for timestamp, mote_id, counter, temperature in tr.read():            
            mote = motes.get(mote_id, None)
            if mote is not None:
                if len(mote['temp_buffer']) >= compression_factor:
                    avg_temp = sum(mote['temp_buffer']) / len(mote['temp_buffer'])
                    initial_timestamp = mote['timestamp_buffer'][0]
                    
                    tw.write((initial_timestamp, mote_id, avg_temp))
                    
                    del mote['temp_buffer'][:]
                    del mote['timestamp_buffer'][:]
            else:
                motes[mote_id] = {'temp_buffer': [], 'timestamp_buffer': []}
                
            motes[mote_id]['temp_buffer'].append(temperature)
            motes[mote_id]['timestamp_buffer'].append(timestamp)    
    finally:
        tw.close()
Exemple #2
0
    def setup(self):
        '''
        Find emergencies and do some preprocessing.
        '''
        trace_reader = TraceReader(self.trace_path)
        trace_gen = trace_reader.parse()

        # Fills the observation list and finds the trace_start and trace_end
        data = trace_gen.next()
        self.trace_start = data[
            'timestamp'] + self.trace_start_offset  # actual trace start
        self.observations.append(self.data_facade(data, self.mote_id))
        for data in trace_gen:
            self.observations.append(self.data_facade(data, self.mote_id))
            self.trace_end = data['timestamp']

        # Fills the hidden_vars list
        if self.spirit_mode:
            with open(self.hidden_vars_path) as file_obj:
                self.mote_ids = file_obj.readline()[1:].split()
                self.hidden_vars = [data[1] for data in file_iter(file_obj)]
            with open(self.weights_path) as file_obj:
                self.weights = [data[1:] for data in file_iter(file_obj)]

        # Finds all emergencies
        self.emergencies = [e for e in self.confirmation_trigger(iter(self.observations), \
                                                                 offset=self.trace_start - self.trace_start_offset)]
        self.emergencies = trim_emergencies(self.trace_start, self.emergencies,
                                            self.trace_end)
        self.emergencies = join_emergencies(self.emergencies, self.delta)

        assert len(self.emergencies) > 0
Exemple #3
0
 def __init__(self, trace_path, lag):        
     oracle_trace = TraceReader(trace_path)
     
     self.trace_gen = oracle_trace.read()
     for _i in xrange(lag - 1):
         self.trace_gen.next()
     self.training_delay = 0
     self.last_value = 0
Exemple #4
0
    def __init__(self, trace_path, lag):
        oracle_trace = TraceReader(trace_path)

        self.trace_gen = oracle_trace.read()
        for _i in xrange(lag - 1):
            self.trace_gen.next()
        self.training_delay = 0
        self.last_value = 0
Exemple #5
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {input_filename} [-compress {factor}] [-i motes_to_ignore]" % args[
            0]
        exit()

    filename = args[1]
    motes_to_ignore = [int(m) for m in args[args.index('-i') +
                                            1:]] if '-i' in args else []
    compression_factor = int(args[args.index('-compress') +
                                  1]) if '-compress' in args else 0

    tracereader = TraceReader(filename, supress_repetitions=False, auto_timestamps=False, \
                              auto_interpolation=False, motes_to_ignore=motes_to_ignore)

    print "Pre-processing..."
    if filename.endswith("agg"):
        t_adapter = TraceAdapter(tracereader, RAW_FILE_FORMAT, TEMP)
        outname = get_output_filename(filename, ".txt")
    else:
        t_adapter = TraceAdapter(tracereader, UNIFORM_FILE_FORMAT)
        outname = get_output_filename(filename)
    tracewriter = TraceWriter(outname,
                              arff_attributes=t_adapter.arff_attributes)

    print "Processing..."
    try:
        if compression_factor == 0:
            for data in t_adapter.parse():
                tracewriter.write(data)
        else:
            #acc = dict.fromkeys(tracereader.arff_attributes, 0.0)
            acc = None
            count = 0
            for data in t_adapter.parse():
                if count % compression_factor == 0:
                    if acc:
                        # Calculate mean
                        for k, v in acc.iteritems():
                            acc[k] /= compression_factor
                        tracewriter.write(acc)
                    acc = data.copy()
                else:
                    for k, v in data.iteritems():
                        acc[k] += v

                count += 1
    finally:
        tracereader.close()
        tracewriter.close()

    print "Done."
Exemple #6
0
def main():
    filename = r"D:\Giulio\My Dropbox\Projeto Sensores\experiments\temperatura\sala_servidores\samples_04_10_12_12h28m36s.arff"
    #filename = r"D:\Giulio\workspace2\SensorMonitor\output\arff\temps_25_05_12_15h09m48s.arff"    
    splits = 1
    
    #detectors = [CUSUMDetector(anomaly_threshold=0.01, L=0.0, alpha=0.6) for _ in xrange(splits)]    
    detectors = [TSBitmaps(lag_window=8, lead_window=8, anomaly_threshold=0.355, N=400, n=100, alphabet="abcd") for _ in xrange(splits)]
    splitter = SPIRITSplitter(detectors)
    
    tr = TraceReader(filename, supress_repetitions=False, auto_timestamps=False, suppress_rapid_changes=False)
    for data in tr.read():
        anomalies = splitter.update(data)
        if anomalies:
            print data['timestamp'] - 600, data['timestamp'] + 600#, anomalies
Exemple #7
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {input_filename} [-compress {factor}] [-i motes_to_ignore]" % args[0]
        exit()
        
    filename = args[1]
    motes_to_ignore = [int(m) for m in args[args.index('-i') + 1:]] if '-i' in args else []
    compression_factor = int(args[args.index('-compress') + 1]) if '-compress' in args else 0
    
    tracereader = TraceReader(filename, supress_repetitions=False, auto_timestamps=False, \
                              auto_interpolation=False, motes_to_ignore=motes_to_ignore)    
    
    print "Pre-processing..."
    if filename.endswith("agg"):
        t_adapter = TraceAdapter(tracereader, RAW_FILE_FORMAT, TEMP)
        outname = get_output_filename(filename, ".txt")
    else:
        t_adapter = TraceAdapter(tracereader, UNIFORM_FILE_FORMAT)
        outname = get_output_filename(filename)
    tracewriter = TraceWriter(outname, arff_attributes=t_adapter.arff_attributes)
       
    
    print "Processing..."
    try:
        if compression_factor == 0:
            for data in t_adapter.parse():
                tracewriter.write(data)
        else:
            #acc = dict.fromkeys(tracereader.arff_attributes, 0.0)
            acc = None
            count = 0
            for data in t_adapter.parse():                
                if count % compression_factor == 0:
                    if acc:
                        # Calculate mean
                        for k, v in acc.iteritems():
                            acc[k] /= compression_factor
                        tracewriter.write(acc)
                    acc = data.copy()
                else:          
                    for k, v in data.iteritems():
                        acc[k] += v
                
                count += 1
    finally:
        tracereader.close()
        tracewriter.close()
        
    print "Done."
Exemple #8
0
def calc_spirit_errors(timeseries_length, errors_to_calculate, lag, results, \
                       weights_filename, trace_filename):
    '''
    @todo: make sure that the weight vector matches the expected order
    '''
    # calculate errors cutting out the training data        
    errors = [list() for _i in xrange(len(errors_to_calculate))]
        
    weights_file = open(weights_filename) # spirit weights
    trace_file = open(trace_filename)     # real trace with multiple series
    predicted_data = []
    observed_data = []
    
    try:
        weights_file_iter = file_iter(weights_file)
        trace_file_iter = TraceReader(trace_filename).parse()
        # advance lag
        for _i in xrange(lag):
            trace_file_iter.next()
            for k in xrange(len(errors_to_calculate)):
                errors[k].append(0)
        
        for i in xrange(timeseries_length - lag):
            w = weights_file_iter.next()            
            _y, predicted_y = results[i]
                                            
            reconstructed_x = [predicted_y * w[j] for j in xrange(1, len(w))] # skip timestamp
            x = [v for k, v in trace_file_iter.next().iteritems() if k != "timestamp"]
                        
            predicted_data.append(reconstructed_x[:1])
            observed_data.append(x[:1])
                        
            for k in xrange(len(errors_to_calculate)):
                error_method = errors_to_calculate[k]
                error = _calc_error(x, reconstructed_x, error_method, True)                
                errors[k].append(error)
    finally:
        weights_file.close()
        trace_file.close()
    
    if PLOT:
        pyplot.plot(observed_data, '-')
        pyplot.plot(predicted_data, '-')
        pyplot.show()
    
    assert len(errors[0]) == timeseries_length, "%d != %d" % (len(errors[0]), timeseries_length)
    
    return errors
Exemple #9
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {filename} [-compress {factor}]"
        exit()

    filename = args[1]
    compression_factor = int(args[3]) if len(args) > 2 else 1
    tr = TraceReader(filename)
    tw = TraceWriter('output.arff', tr.arff_attributes)

    sensors = None
    data_keys = None
    data_keys_len = 0
    out_data = OrderedDict()
    count = 1

    for data in tr.parse():
        if not sensors:
            sensors = [Sensor() for _i in xrange(len(data) - 1)]
            data_keys = data.keys()
            data_keys_len = len(data_keys)
            for key in data_keys:
                out_data[key] = 0.0

        for i in xrange(1, data_keys_len):
            key = data_keys[i]
            out_data[key] += sensors[i - 1].emulate(data[key])

        if count % compression_factor == 0:
            out_data['timestamp'] = data['timestamp'] - compression_factor / 2.

            for i in xrange(1, data_keys_len):
                out_data[data_keys[i]] /= compression_factor

            tw.write(out_data)

            for key in data_keys:
                out_data[key] = 0.0

        count += 1

    tw.close()
Exemple #10
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {filename} [-compress {factor}]"
        exit()
    
    filename = args[1]
    compression_factor = int(args[3]) if len(args) > 2 else 1
    tr = TraceReader(filename)
    tw = TraceWriter('output.arff', tr.arff_attributes)
            
    sensors = None
    data_keys = None
    data_keys_len = 0
    out_data = OrderedDict()    
    count = 1
    
    for data in tr.parse():                
        if not sensors:
            sensors = [Sensor() for _i in xrange(len(data) - 1)]
            data_keys = data.keys()
            data_keys_len = len(data_keys)
            for key in data_keys:
                out_data[key] = 0.0
        
        for i in xrange(1, data_keys_len):
            key = data_keys[i]
            out_data[key] += sensors[i - 1].emulate(data[key])
                
        if count % compression_factor == 0:
            out_data['timestamp'] = data['timestamp'] - compression_factor / 2.
                        
            for i in xrange(1, data_keys_len):
                out_data[data_keys[i]] /= compression_factor
            
            tw.write(out_data)
            
            for key in data_keys:
                out_data[key] = 0.0
        
        count += 1
    
    tw.close()
Exemple #11
0
def main(args):
    filename = '/home/giulio/Dropbox/Projeto Sensores/experiments/temperatura/sala_servidores/samples_20_02_13_15h05m47s.agg'
    motes_to_ignore = []
    tr = TraceReader(filename, motes_to_ignore)
    
    mote_first_data = {}
    mote_last_data = {}
    line_count = 0
    
    for data in tr.read():
        mote_id = data[1]
        if mote_id not in mote_first_data.iterkeys():
            mote_first_data[mote_id] = data
        mote_last_data[mote_id] = data
        line_count += 1
    
    tr.reset()
    
    # replicate all the first temps to the smallest timestamp
    min_timestamp = min(data[0] for data in mote_first_data.itervalues())
        
    for data in mote_first_data.itervalues():
        if data[0] != min_timestamp:
            data = list(data)
            data[0] = min_timestamp
            print " ".join(str(d) for d in data)
    
    # print all data except last line
    for data in tr.read():
        print " ".join(str(d) for d in data)
        line_count -= 1
        if line_count == 1:
            break
    
    max_timestamp = max(data[0] for data in mote_last_data.itervalues())
    
    for data in mote_last_data.itervalues():
        if data[0] != max_timestamp:
            data = list(data)
            data[0] = max_timestamp
            print " ".join(str(d) for d in data)
Exemple #12
0
def main(args):
    if "-h" in args or len(args) < 2:
        print 'Usage: python %s {compression factor} {input file path}' % (
            args[0])
        exit()

    compression_factor = int(args[1])

    input_file_path = args[2]

    motes = {}  # holds last reading for each mote

    tr = TraceReader(input_file_path)
    tw = TraceWriter(
        "%s_compressed.%s" %
        (os.path.basename(input_file_path).split(".")[0], tr.file_type),
        tr.arff_attributes)

    try:
        for timestamp, mote_id, counter, temperature in tr.read():
            mote = motes.get(mote_id, None)
            if mote is not None:
                if len(mote['temp_buffer']) >= compression_factor:
                    avg_temp = sum(mote['temp_buffer']) / len(
                        mote['temp_buffer'])
                    initial_timestamp = mote['timestamp_buffer'][0]

                    tw.write((initial_timestamp, mote_id, avg_temp))

                    del mote['temp_buffer'][:]
                    del mote['timestamp_buffer'][:]
            else:
                motes[mote_id] = {'temp_buffer': [], 'timestamp_buffer': []}

            motes[mote_id]['temp_buffer'].append(temperature)
            motes[mote_id]['timestamp_buffer'].append(timestamp)
    finally:
        tw.close()
Exemple #13
0
def read_data(f_reading):
    '''This is especific for our problem, n_motes is the number of motes in file, rating is the passed time that I can see.
        Returns a dictionary of dictionaries, the former is a collection of readings divided by mote, the second is the same but convertered for learning algorithm, e.g:
        'data': {'255':[(0, 0),(1, 1.75),(2, 3)], '254': [(3, 2.55),(4, 6),(5, 7)]}'''
    '''
    data = {}
    for i in range(5):
        data[str(i)] = [ (i, uniform(10, 15)*i/100) for i in range(100, int(uniform(200,300)))]
    return data
    '''
    try:
        print 'Making data'
        elapsed = os.times()[-1]
        from SharedLibs.tracetools import TraceReader, TraceAdapter, UNIFORM_FILE_FORMAT
        data = {}
        tR = TraceReader(f_reading, motes_to_ignore=[236, 246])
        tA = TraceAdapter(tR, UNIFORM_FILE_FORMAT)

        for momment in tA.parse():
            timestamp = momment['timestamp']
            for mote in momment.keys()[1:]:
                if mote in data.keys():
                    data[mote].append((timestamp, momment[mote]))
                else:
                    data[mote] = [(timestamp, momment[mote])]

        for mote in data:
            i, j = 0, 0
            while j < len(data[mote]):
                while j < len(
                        data[mote]) and data[mote][i][0] == data[mote][j][0]:
                    j += 1
                if i != j:
                    data[mote][i:j] = [
                        (data[mote][i][0],
                         sum(map(lambda x: x[1], data[mote][i:j])) / (j - i))
                    ]
                i += 1
                j = i
        elapsed = os.times()[-1] - elapsed
        print '\tData done in %d seconds.\n\tMotes %s' % (
            elapsed, repr(data.keys())[1:-1])
        #save = open(f_reading+'data', 'w')
        #pickle.dump(data, save)
        #save.close()
        return data

    except IOError:
        print 'Invalid File'
        return {}
Exemple #14
0
def main(args):
    filename = '/home/giulio/Dropbox/Projeto Sensores/experiments/temperatura/sala_servidores/samples_20_02_13_15h05m47s.agg'
    motes_to_ignore = []
    tr = TraceReader(filename, motes_to_ignore)

    mote_first_data = {}
    mote_last_data = {}
    line_count = 0

    for data in tr.read():
        mote_id = data[1]
        if mote_id not in mote_first_data.iterkeys():
            mote_first_data[mote_id] = data
        mote_last_data[mote_id] = data
        line_count += 1

    tr.reset()

    # replicate all the first temps to the smallest timestamp
    min_timestamp = min(data[0] for data in mote_first_data.itervalues())

    for data in mote_first_data.itervalues():
        if data[0] != min_timestamp:
            data = list(data)
            data[0] = min_timestamp
            print " ".join(str(d) for d in data)

    # print all data except last line
    for data in tr.read():
        print " ".join(str(d) for d in data)
        line_count -= 1
        if line_count == 1:
            break

    max_timestamp = max(data[0] for data in mote_last_data.itervalues())

    for data in mote_last_data.itervalues():
        if data[0] != max_timestamp:
            data = list(data)
            data[0] = max_timestamp
            print " ".join(str(d) for d in data)
Exemple #15
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {trace path} [-s (spirit mode) {weights path} {original trace path}]" % (args[0], )
        exit()
    
    input_path = args[1]
    
    tr = TraceReader(input_path, supress_repetitions=False, auto_interpolation=False, suppress_rapid_changes=False, \
                      motes_to_ignore=[])
    
    emergency_confirmations = 1
    predictor_confirmations = 1
    lower_temp_threshold = 30.0
    higher_temp_threshold = 30.0
    series_id = "mote_244"
    compression_factor = 1
    lag = 10 * 60
    cmp_lag = lag / compression_factor
    delta = 60
    predictor_delta = 0.0
    error_offset = 12 * 60
    
    # Filter config
    #filter_args = {"alpha": 9 * 1e-1, "beta": 8 * 1e-3, "k": cmp_lag}
    #filter_args = {"lag": cmp_lag, "window_size": 2 * 60}
    filter_args = {"lag": cmp_lag, "dataset_size": 2 * 60, "order": 2}    
    #filter_cls = filters.HoltFilter
    #filter_args = {"alpha": 1 * 1e-3}
    #filter_cls = filters.ExpFilter
    #filter_args = {}
    #filter_cls = filters.DummyFilter
    #filter_args = {"learning_rate" : 1 * 1e-3, "lag": cmp_lag, "dataset_size": 1, "num_last_measures": 1}
    #filter_args = {"learning_rate" : 6 * 1e-7, "lag": cmp_lag, "dataset_size": 1, "num_last_measures": 10}
    #filter_cls = filters.LinearPerceptron
    #filter_cls = filters.RollingPerceptron
    #filter_cls = filters.SigmoidPerceptron
    #filter_cls = filters.PerceptronFilterBreno
    #filter_cls = filters.PerceptronFilterPyBrain
    #filter_cls = filters.AdaptableHoltFilter
    filter_cls = filters.AdaptableARFilter
    
    forecaster = filter_cls(**filter_args)
    
    print "# INFO"
    print "# Emergency confirmations: %d" % emergency_confirmations    
    print "# Predictor confirmations: %d" % predictor_confirmations 
    print "# Temperature threshold: %s degrees" % ((lower_temp_threshold, higher_temp_threshold), )
    print "# Series ID: %s" % series_id
    print "# Lag: %d seconds" % lag
    print "# Forecaster: %s" % repr(forecaster)    
    print "# Predictor delta: %f" % predictor_delta
    print "# Compression factor: %d" % compression_factor
    
    if '-s' in args:
        s_index = args.index('-s')
        weights_path = args[s_index + 1]
        hidden_vars_path = input_path
        spirit_preproc, _predictions = spirit_closure(weights_path, hidden_vars_path, None)
    else:
        spirit_preproc = None
    
    print "Compressing trace..."    
    compressed_trace = compress_trace(tr, compression_factor, series_id)
    
    print "Looking for emergencies..."
    emergencies = [e for e in confirmation_trigger(compressed_trace, lower_temp_threshold, higher_temp_threshold, \
                                                   series_id, emergency_confirmations, preproc_function=spirit_preproc)]
               
    train_delay = max(forecaster.training_delay, 1)
    trace_offset = cmp_lag + train_delay
    print "Trace offset:", trace_offset
    
    print "Making predictions..."    
    
    data_gen = iter(compressed_trace)
            
    # Train
    trace_start = -1
    for _ in xrange(train_delay):            
        data = data_gen.next()
        if trace_start < 0:
            trace_start = data['timestamp'] + trace_offset
        forecaster.apply(data[series_id])
    
    assert trace_start >= 0
    
    # Advance notice
    observations = []
    predictions = []
    triggered_emergencies = []
    
    def predictor_preproc_function(data, mote_id):
        temp = data[mote_id]
        observations.append(temp)
        prediction = forecaster.apply(temp)
        predictions.append(prediction)
        return prediction
    
    if '-s' in args:        
        predictor_preproc_function, predictions = spirit_closure(weights_path, hidden_vars_path, forecaster.apply)
    
    for emergency_start, emergency_temp, emergency_end in \
        confirmation_trigger(compressed_trace, lower_temp_threshold + predictor_delta, \
                             higher_temp_threshold - predictor_delta, series_id, predictor_confirmations, \
                             preproc_function=predictor_preproc_function):
        triggered_emergencies.append((emergency_start + lag, emergency_temp, emergency_end + lag))
    
    
    if '-s' in args:
        original_trace_path = args[s_index + 2]
        observations = map(lambda d: d[series_id], compress_trace(TraceReader(original_trace_path), \
                                                                  compression_factor, series_id))
                
    trace_end = trace_start + (len(observations) - cmp_lag)
    emergencies = trim_emergencies(trace_start, emergencies, trace_end)
    triggered_emergencies = trim_emergencies(trace_start, triggered_emergencies, trace_end)
        
    emergencies = join_emergencies(emergencies, delta)
    triggered_emergencies = join_emergencies(triggered_emergencies, delta)
        
    print "Found %d emergencies." % len(emergencies)
    assert len(emergencies) > 0
    
    mat = thermocast_analyze_predictions(triggered_emergencies, emergencies, lag)
    underdetected_time, overdetected_time, detected_time = xor_analyze_predictions(triggered_emergencies, emergencies)
        
    recall = detected_time  / (detected_time + underdetected_time + 1e-100)
    FAR = overdetected_time / (detected_time + overdetected_time  + 1e-100)
    
    del observations[:cmp_lag] # removes data that is not subject to prediction
    del predictions[-cmp_lag:] # removes predictions that cannot be followed by data
            
    total_detection_time = int(sum(e[2] - e[0] for e in emergencies))
                
    timeseries_length = len(observations)    
    errors = calc_errors(timeseries_length, (MSE, ), map(lambda a: ([a[0]], [a[1]]), zip(observations, predictions)), \
                         multivariate=True, offset=error_offset)
    
    rmse = math.sqrt(sum(errors[0]) / (timeseries_length - error_offset))
        
    print "Known emergency time : %d seconds" % total_detection_time                        
    print "Recall               : %.4f" % recall
    print "FAR                  : %.4f" % FAR        
    print "MAT                  : %.4f seconds" % mat
    print "RMSE                 : %.4f" % rmse
    
    # calculate average tardiness:
    #avg_tardiness = calc_avg_tardiness(emergencies, triggered_emergencies)
    #print "Avg tardiness: %.1f seconds" % (avg_tardiness,)
    
    if PLOT:
        print "Plotting..."
        
        pyplot.grid(True)
                        
        dates = matplotlib.dates.date2num([datetime.datetime.fromtimestamp(trace_start + i * compression_factor) \
                                           for i in xrange(len(observations))])
        
        p1, = pyplot.plot_date(dates, observations, '-')
        p2, = pyplot.plot_date(dates, predictions, '-')
        pyplot.plot_date(dates, [lower_temp_threshold] * len(dates), '--', color="red") # temperatura threshold
        pyplot.plot_date(dates, [higher_temp_threshold] * len(dates), '--', color="red") # temperatura threshold
        
        pyplot.plot_date(dates, [lower_temp_threshold + predictor_delta] * len(dates), '--', color="orange") # temperatura threshold
        pyplot.plot_date(dates, [higher_temp_threshold - predictor_delta] * len(dates), '--', color="orange") # temperatura threshold
        
        def plot_emergencies(emergency_list, color, style, offset=0.5):
            for emergency_time, emergency_temp, emergency_end in emergency_list:
                pyplot.plot_date((datetime.datetime.fromtimestamp(emergency_time), \
                                  datetime.datetime.fromtimestamp(emergency_end)), \
                                 [emergency_temp + offset] * 2, style, color=color, linewidth=3)
        
        # plot real emergencies
        plot_emergencies(emergencies, "red", '-', 1)
        
        # plot detected emergencies
        plot_emergencies(triggered_emergencies, "orange", '-', -1)  
        
        pyplot.legend((p2, p1), ("predictions", "observations"))
        pyplot.show()
Exemple #16
0
def main(args):
    if len(args) < 2:
        print "Usage: python %s {trace path} [-s (spirit mode) {weights path} {original trace path}]" % (args[0])
        exit()
    
    input_path = args[1]
    weights_path = None
    original_trace_path = None
    
    spirit_mode = '-s' in args
    if spirit_mode:
        assert not MULTIVARIATE
        
        spirit_mode_index = args.index('-s')
        weights_path = args[spirit_mode_index + 1]
        original_trace_path = args[spirit_mode_index + 2]
     
    tr = TraceReader(input_path)
    
    lag = int(5 * TIME_MULT) # time units (seconds)
    errors_to_calculate = (filters.MSE, filters.MAE)
    
    #filter_args = {"alpha": 9 * 1e-1, "beta": 2 * 1e-2, "k": lag}
    #filter_args = {"alpha": 4 * 1e-1}
    #filter_args = {"num_last_measures" : 7, "learning_rate" : 1e-4, "lag": lag, "dataset_size": 1}
    #filter_args = {"dataset_size": 2 * TIME_MULT, "lag": lag, "order": 2}
    #filter_args = {"dataset_size": sys.maxint, "order": 1, "lag": lag, "optimize": False, \
    #               "c": 0, "phi": [1]}
    filter_args = {"lag": lag, "window_size": 3 * TIME_MULT}
    #filter_args = {}
    #filter_cls = filters.ExpAvg
    #filter_cls = filters.HoltFilter
    filter_cls = filters.AdaptableHoltFilter
    #filter_cls = filters.DummyFilter
    #filter_cls = filters.SigmoidPerceptron
    #filter_cls = filters.HardLearningLinearPerceptron
    #filter_cls = filters.LinearPerceptron
    #filter_cls = filters.MultiLayerPerceptron
    #filter_cls = filters.RollingPerceptron
    #filter_cls = filters.LazyRollingPerceptron
    #filter_cls = filters.LazyLinearPerceptron
    #filter_cls = filters.FiniteDiffPerceptron
    #filter_cls = filters.DiffPerceptron
    #filter_cls = filters.Oracle
    #filter_cls = filters.Bote
    #filter_cls = filters.SmoothingBote
    #filter_cls = filters.AdaptableARFilter
    #filter_cls = filters.ARFilter
    
    if filter_cls == filters.Oracle:             
        filter_args = {'trace_path': input_path, "lag": lag}
    
    if MULTIVARIATE:
        forecaster = MultivariateFilter(filter_cls, filter_args, len(tr.arff_attributes) - 1) # ignore timestamp
    else:
        forecaster = filter_cls(**filter_args)    
    
    mote_id = "mote_239"
    offset = lag + forecaster.training_delay
    desired_offset = 12 * TIME_MULT
    offset = max(offset, desired_offset)
        
    print "# INFO"
    print "# Lag: %d" % (lag, )
    print "# Errors to calculate: %s" % (", ".join(filters.ERROR_TO_STR[x] for x in errors_to_calculate), )
    print "# Forecaster: %s" % (forecaster, )
    print "# Offset: %d" % (offset, )
        
    start_time = time.time()
    
    results = []
    
    print "Creating buffer..."
    # creates a buffer that consists of the length of the lag window
    data_gen = tr.read()
    
    # fill buffer
    data_buffer = deque(maxlen=lag + 1)
    for _i in xrange(lag + 1):
        data = data_gen.next() # exclude timestamp
        data_buffer.append(get_data(data, mote_id, tr, multivariate=MULTIVARIATE))
    
    print "Making predictions..."            
    # store observations and predictions
    count = 0
    for data in data_gen:
        observation = data_buffer[-1]
        prediction = forecaster.apply(data_buffer[0])
        results.append((observation, prediction))        
        data_buffer.append(get_data(data, mote_id, tr, multivariate=MULTIVARIATE))
        count += 1
        if count % 500 == 0 and isinstance(forecaster, PerceptronBase):
            print "%8d: %s" % (count, forecaster.debug()), len(forecaster.data)
    
    '''
    for fc in forecaster.filters:
        fc.optimize_parameters(fc._data, fc._model)
        print [val / 1e+11 for val in fc._model.itervalues()]
    '''
    
    print "Calculating errors..."
    timeseries_length = len(results)
    
    if spirit_mode:
        errors = calc_spirit_errors(timeseries_length, errors_to_calculate, lag, results, weights_path, original_trace_path)
    else:
        errors = calc_errors(timeseries_length, errors_to_calculate, results, multivariate=MULTIVARIATE, offset=offset)
    
        
    print "# RESULTS"    
    # create averages                
    for k in xrange(len(errors_to_calculate)):
        assert len(errors[k]) == timeseries_length
        
        if MODE == 'avg':
            avg_error = sum(errors[k][offset:]) / (timeseries_length - offset)
        elif MODE == 'max':
            avg_error = max(errors[k][offset:])
                    
        if errors_to_calculate[k] == filters.MSE and RMSE:
            avg_error = math.sqrt(avg_error)
            print "(RMSE mode)"
        print "%s: %f" % (filters.ERROR_TO_STR[errors_to_calculate[k]], avg_error)
    
    print "\nElapsed: %f secs" % (time.time() - start_time)