def activeCells(self):
        if getattr(self, "_activeCells", None) is None:
            if getattr(self, "topofile", None) is not None:
                topo = np.genfromtxt(self.basePath + self.topofile,
                                     skip_header=1)

                # Find the active cells
                active = utils.surface2ind_topo(self.mesh, topo, "N")

            elif isinstance(self._staticInput, float):
                active = self.m0 != self._staticInput

            else:
                # Read from file active cells with 0:air, 1:dynamic, -1 static
                active = self.activeModel != 0

            inds = np.where(active)[0]

            self._activeCells = inds

            # Reduce m0 to active space
            if len(self.m0) > len(self._activeCells):
                self._m0 = self.m0[self._activeCells]

        return self._activeCells
Exemple #2
0
    def test_Tile(self):
        """
        Test for TileMap
        """
        rxLocs = np.random.randn(3, 3) * 20
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        local_meshes = []

        for ii in range(rxLocs.shape[0]):

            local_mesh = mesh_builder_xyz(rxLocs,
                                          h,
                                          padding_distance=padDist,
                                          mesh_type="tree")
            local_mesh = refine_tree_xyz(
                local_mesh,
                rxLocs[ii, :].reshape((1, -1)),
                method="radial",
                octree_levels=[1],
                finalize=True,
            )

            local_meshes.append(local_mesh)

        mesh = mesh_builder_xyz(rxLocs,
                                h,
                                padding_distance=padDist,
                                mesh_type="tree")

        # This garantees that the local meshes are always coarser or equal
        for local_mesh in local_meshes:
            mesh.insert_cells(
                local_mesh.gridCC,
                local_mesh.cell_levels_by_index(np.arange(local_mesh.nC)),
                finalize=False,
            )
        mesh.finalize()

        # Define an active cells from topo
        activeCells = utils.surface2ind_topo(mesh, rxLocs)

        model = np.random.randn(int(activeCells.sum()))
        total_mass = (model * mesh.vol[activeCells]).sum()

        for local_mesh in local_meshes:

            tile_map = maps.TileMap(
                mesh,
                activeCells,
                local_mesh,
            )

            local_mass = ((tile_map * model) *
                          local_mesh.vol[tile_map.local_active]).sum()

            self.assertTrue((local_mass - total_mass) / total_mass < 1e-8)
Exemple #3
0
    def test_surface2ind_topo(self):
        file_url = (
            "https://storage.googleapis.com/simpeg/tests/utils/vancouver_topo.xyz"
        )
        file2load = download(file_url)
        vancouver_topo = np.loadtxt(file2load)
        mesh_topo = discretize.TensorMesh(
            [[(500.0, 24)], [(500.0, 20)], [(10.0, 30)]], x0="CCC")

        indtopoCC = surface2ind_topo(mesh_topo,
                                     vancouver_topo,
                                     gridLoc="CC",
                                     method="nearest")
        indtopoN = surface2ind_topo(mesh_topo,
                                    vancouver_topo,
                                    gridLoc="N",
                                    method="nearest")

        assert len(np.where(indtopoCC)[0]) == 8729
        assert len(np.where(indtopoN)[0]) == 8212
Exemple #4
0
                        h,
                        padding_distance=padDist,
                        depth_core=100,
                        mesh_type="tree")

# This garantees that the local meshes are always coarser or equal
for local_mesh in local_meshes:
    mesh.insert_cells(
        local_mesh.gridCC,
        local_mesh.cell_levels_by_index(np.arange(local_mesh.nC)),
        finalize=False,
    )
mesh.finalize()

# Define an active cells from topo
activeCells = utils.surface2ind_topo(mesh, topo)
nC = int(activeCells.sum())

# We can now create a density model and generate data
# Here a simple block in half-space
# Get the indices of the magnetized block
model = np.zeros(mesh.nC)
ind = utils.ModelBuilder.getIndicesBlock(
    np.r_[-10, -10, -30],
    np.r_[10, 10, -10],
    mesh.gridCC,
)[0]

# Assign magnetization values
model[ind] = 0.3
    def setUp(self):
        # We will assume a vertical inducing field
        H0 = (50000.0, 90.0, 0.0)

        # The magnetization is set along a different direction (induced + remanence)
        M = np.array([45.0, 90.0])

        # Block with an effective susceptibility
        chi_e = 0.05

        # Create grid of points for topography
        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))
        topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)]

        # Create an array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 10

        # Create a MAGsurvey
        rxLoc = np.c_[mkvc(X.T), mkvc(Y.T), mkvc(Z.T)]
        rxList = magnetics.receivers.Point(rxLoc)
        srcField = magnetics.sources.SourceField(receiver_list=[rxList],
                                                 parameters=H0)
        survey = magnetics.survey.Survey(srcField)

        ###############################################################################
        # Inversion Mesh

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        mesh = mesh_builder_xyz(rxLoc,
                                h,
                                padding_distance=padDist,
                                depth_core=100,
                                mesh_type="tree")
        mesh = refine_tree_xyz(mesh,
                               topo,
                               method="surface",
                               octree_levels=[4, 4],
                               finalize=True)

        # Define an active cells from topo
        actv = utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        # Convert the inclination declination to vector in Cartesian
        M_xyz = utils.mat_utils.dip_azimuth2cartesian(
            np.ones(nC) * M[0],
            np.ones(nC) * M[1])

        # Get the indicies of the magnetized block
        ind = utils.model_builder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization value, inducing field strength will
        # be applied in by the :class:`SimPEG.PF.Magnetics` problem
        model = np.zeros(mesh.nC)
        model[ind] = chi_e

        # Remove air cells
        model = model[actv]

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        simulation = magnetics.Simulation3DIntegral(
            survey=survey,
            mesh=mesh,
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="forward_only",
        )
        simulation.M = M_xyz

        # Compute some data and add some random noise
        synthetic_data = simulation.dpred(model)

        # Split the data in components
        nD = rxLoc.shape[0]

        std = 5  # nT
        synthetic_data += np.random.randn(nD) * std
        wd = np.ones(nD) * std

        # Assigne data and uncertainties to the survey
        data_object = data.Data(survey, dobs=synthetic_data, noise_floor=wd)

        ######################################################################
        # Equivalent Source

        # Get the active cells for equivalent source is the top only
        surf = utils.model_utils.surface_layer_index(mesh, topo)
        nC = np.count_nonzero(surf)  # Number of active cells
        mstart = np.ones(nC) * 1e-4

        # Create active map to go from reduce set to full
        surfMap = maps.InjectActiveCells(mesh, surf, np.nan)

        # Create identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create static map
        simulation = magnetics.simulation.Simulation3DIntegral(
            mesh=mesh,
            survey=survey,
            chiMap=idenMap,
            actInd=surf,
            store_sensitivities="ram",
        )
        simulation.model = mstart

        # Create a regularization function, in this case l2l2
        reg = regularization.Sparse(mesh,
                                    indActive=surf,
                                    mapping=maps.IdentityMap(nP=nC),
                                    alpha_z=0)
        reg.mref = np.zeros(nC)

        # Specify how the optimization will proceed, set susceptibility bounds to inf
        opt = optimization.ProjectedGNCG(
            maxIter=10,
            lower=-np.inf,
            upper=np.inf,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-3,
        )

        # Define misfit function (obs-calc)
        dmis = data_misfit.L2DataMisfit(simulation=simulation,
                                        data=data_object)

        # Create the default L2 inverse problem from the above objects
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # Specify how the initial beta is found
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=2)

        # Target misfit to stop the inversion,
        # try to fit as much as possible of the signal, we don't want to lose anything
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      minGNiter=1,
                                      beta_tol=1e-1,
                                      max_irls_iterations=5)
        update_Jacobi = directives.UpdatePreconditioner()
        # Put all the parts together
        inv = inversion.BaseInversion(
            invProb, directiveList=[betaest, IRLS, update_Jacobi])

        # Run the equivalent source inversion
        print("Solving for Equivalent Source")
        mrec = inv.run(mstart)

        ########################################################
        # Forward Amplitude Data
        # ----------------------
        #
        # Now that we have an equialent source layer, we can forward model alh three
        # components of the field and add them up: :math:`|B| = \sqrt{( Bx^2 + Bx^2 + Bx^2 )}`
        #

        rxList = magnetics.receivers.Point(rxLoc,
                                           components=["bx", "by", "bz"])
        srcField = magnetics.sources.SourceField(receiver_list=[rxList],
                                                 parameters=H0)
        surveyAmp = magnetics.survey.Survey(srcField)

        simulation = magnetics.simulation.Simulation3DIntegral(
            mesh=mesh,
            survey=surveyAmp,
            chiMap=idenMap,
            actInd=surf,
            is_amplitude_data=True,
            store_sensitivities="forward_only",
        )

        bAmp = simulation.fields(mrec)

        ######################################################################
        # Amplitude Inversion
        # -------------------
        #
        # Now that we have amplitude data, we can invert for an effective
        # susceptibility. This is a non-linear inversion.
        #

        # Create active map to go from reduce space to full
        actvMap = maps.InjectActiveCells(mesh, actv, -100)
        nC = int(actv.sum())

        # Create identity map
        idenMap = maps.IdentityMap(nP=nC)

        mstart = np.ones(nC) * 1e-4

        # Create the forward model operator
        simulation = magnetics.simulation.Simulation3DIntegral(
            survey=surveyAmp,
            mesh=mesh,
            chiMap=idenMap,
            actInd=actv,
            is_amplitude_data=True,
        )

        data_obj = data.Data(survey, dobs=bAmp, noise_floor=wd)

        # Create a sparse regularization
        reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[1, 0, 0, 0]
        reg.mref = np.zeros(nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_obj)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=10,
                                         lower=0.0,
                                         upper=1.0,
                                         maxIterLS=5,
                                         maxIterCG=5,
                                         tolCG=1e-3)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # Here is the list of directives
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=1)

        # Specify the sparse norms
        IRLS = directives.Update_IRLS(
            max_irls_iterations=5,
            f_min_change=1e-3,
            minGNiter=1,
            coolingRate=1,
            beta_search=False,
        )

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        update_SensWeight = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()

        # Put all together
        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[update_SensWeight, betaest, IRLS, update_Jacobi])

        self.mstart = mstart
        self.model = model
        self.sim = simulation
Exemple #6
0
# Finalize the mesh
mesh.finalize()

#######################################################
# Project Electrodes to Discretized Topography
# --------------------------------------------
#
# It is important that electrodes are not modeled as being in the air. Even if the
# electrodes are properly located along surface topography, they may lie above
# the discretized topography. This step is carried out to ensure all electrodes
# lie on the discretized surface.
#

# Find cells that lie below surface topography
ind_active = surface2ind_topo(mesh, topo_xyz)

# Extract survey from data object
dc_survey = dc_data.survey
ip_survey = ip_data.survey

# Shift electrodes to the surface of discretized topography
dc_survey.drape_electrodes_on_topography(mesh, ind_active, option="top")
ip_survey.drape_electrodes_on_topography(mesh, ind_active, option="top")

# Reset survey in data object
dc_data.survey = dc_survey
ip_data.survey = ip_survey

#################################################################
# Starting/Reference Model and Mapping on OcTree Mesh
Exemple #7
0
def run(plotIt=True, survey_type="dipole-dipole", p=0.0, qx=2.0, qz=2.0):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_abmn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs / IO.G,
                             data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs / IO.G, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh,
                                indActive=actind,
                                mapping=regmap,
                                gradientType="components")
    #     gradientType = 'components'
    reg.norms = np.c_[p, qx, qz, 0.0]
    IRLS = directives.Update_IRLS(max_irls_iterations=20,
                                  minGNiter=1,
                                  beta_search=False,
                                  fix_Jmatrix=True)

    opt = optimization.InexactGaussNewton(maxIter=40)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[betaest, IRLS])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    rho_est = mapping * mopt
    rho_est_l2 = mapping * invProb.l2model
    rho_est[~actind] = np.nan
    rho_est_l2[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(3, 1, figsize=(20, 9))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est_l2,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out3 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[2],
        )

        out = [out1, out2, out3]
        titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)]
        for i in range(3):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
            ax[i].set_title(titles[i])
        plt.tight_layout()
        plt.show()
def run(plotIt=True, survey_type="dipole-dipole"):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    geometric_factor = survey.set_geometric_factor(
        data_type="apparent_resistivity",
        survey_type="dipole-dipole",
        space_type="half-space",
    )

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs, data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor (10 ohm-m)
    eps = 1.0
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap)
    opt = optimization.InexactGaussNewton(maxIter=15)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(
        invProb,
        directiveList=[beta, target, updateSensW, betaest, update_Jacobi])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Get diag(JtJ)
    mask_inds = np.ones(mesh.nC, dtype=bool)
    jtj = np.sqrt(updateSensW.JtJdiag[0])
    jtj /= jtj.max()
    temp = np.ones_like(jtj, dtype=bool)
    temp[jtj > 0.005] = False
    mask_inds[actind] = temp
    actind_final = np.logical_and(actind, ~mask_inds)
    jtj_cc = np.ones(mesh.nC) * np.nan
    jtj_cc[actind] = jtj

    # Show the sensitivity
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            jtj_cc,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(0.005, 0.5),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Sensitivity")
        ax.set_aspect("equal")
        plt.show()

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_est[~actind_final] = np.nan
    rho_true = rho.copy()
    rho_true[~actind_final] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
        plt.tight_layout()
        plt.show()
# -----------------------------------------------------
#
# It is important that electrodes are not modeled as being in the air. Even if the
# electrodes are properly located along surface topography, they may lie above
# the discretized topography. This step is carried out to ensure all electrodes
# lie on the discretized surface.
#

# Define conductivity model in S/m (or resistivity model in Ohm m)
air_conductivity = 1e-8
background_conductivity = 1e-2
conductor_conductivity = 1e-1
resistor_conductivity = 1e-3

# Find active cells in forward modeling (cell below surface)
ind_active = surface2ind_topo(mesh, xyz_topo[:, [0, 2]])

# Define mapping from model to active cells
nC = int(ind_active.sum())
conductivity_map = maps.InjectActiveCells(mesh, ind_active, air_conductivity)

# Define model
conductivity_model = background_conductivity * np.ones(nC)

ind_conductor = model_builder.getIndicesSphere(np.r_[-120.0, -180.0], 60.0,
                                               mesh.gridCC)
ind_conductor = ind_conductor[ind_active]
conductivity_model[ind_conductor] = conductor_conductivity

ind_resistor = model_builder.getIndicesSphere(np.r_[120.0, -180.0], 60.0,
                                              mesh.gridCC)
h = [5, 5, 5]
padDist = np.ones((3, 2)) * 100

mesh = mesh_builder_xyz(xyzLoc,
                        h,
                        padding_distance=padDist,
                        depth_core=100,
                        mesh_type="tree")
mesh = refine_tree_xyz(mesh,
                       topo,
                       method="surface",
                       octree_levels=[4, 4],
                       finalize=True)

# Define an active cells from topo
actv = utils.surface2ind_topo(mesh, topo)
nC = int(actv.sum())

###########################################################################
# A simple function to plot vectors in TreeMesh
#
# Should eventually end up on discretize
#


def plotVectorSectionsOctree(
    mesh,
    m,
    normal="X",
    ind=0,
    vmin=None,
Exemple #11
0
    def setUp(self):

        np.random.seed(0)

        # First we need to define the direction of the inducing field
        # As a simple case, we pick a vertical inducing field of magnitude
        # 50,000nT.
        # From old convention, field orientation is given as an
        # azimuth from North (positive clockwise)
        # and dip from the horizontal (positive downward).
        H0 = (50000.0, 90.0, 0.0)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100
        nCpad = [2, 4, 2]

        # Create grid of points for topography
        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200.0, 200.0, 50),
                               np.linspace(-200.0, 200.0, 50))

        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))

        # We would usually load a topofile
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(xyzLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # self.mesh.finalize()
        self.mesh = meshutils.mesh_builder_xyz(
            xyzLoc,
            h,
            padding_distance=padDist,
            mesh_type="TREE",
        )

        self.mesh = meshutils.refine_tree_xyz(
            self.mesh,
            topo,
            method="surface",
            octree_levels=nCpad,
            octree_levels_padding=nCpad,
            finalize=True,
        )

        # Define an active cells from topo
        actv = utils.surface2ind_topo(self.mesh, topo)
        nC = int(actv.sum())

        # We can now create a susceptibility model and generate data
        # Lets start with a simple block in half-space
        self.model = utils.model_builder.addBlock(
            self.mesh.gridCC,
            np.zeros(self.mesh.nC),
            np.r_[-20, -20, -15],
            np.r_[20, 20, 20],
            0.05,
        )[actv]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="ram",
        )
        self.sim = sim
        data = sim.make_synthetic_data(self.model,
                                       relative_error=0.0,
                                       noise_floor=1.0,
                                       add_noise=True)

        # Create a regularization
        reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]

        reg.mref = np.zeros(nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(
            maxIter=10,
            lower=0.0,
            upper=10.0,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-4,
            stepOffBoundsFact=1e-4,
        )

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e6)

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      max_irls_iterations=20,
                                      beta_tol=1e-1,
                                      beta_search=False)
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights()
        self.inv = inversion.BaseInversion(
            invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi])
Exemple #12
0
def iterator(mesh,
             domain,
             surface,
             cell_width,
             objct,
             coordinates,
             receiver_locations,
             source_locations,
             survey,
             par_background,
             par_object,
             ind_object,
             frequency=1,
             omega=2 * np.pi,
             parameter='resistivity',
             interpolation='rbf',
             type_object='block',
             lim_iterations=5,
             factor_object=2,
             factor_receiver=3,
             factor_source=3,
             refine_percentage=0.05,
             axis='x',
             degrees_rad=0,
             radius=1,
             Ex=None,
             Ey=None,
             Ez=None,
             diff_list=np.array([[0, 0]]),
             r_a_o_list=None,
             r_a_r_list=None,
             r_a_s_list=None):
    """An iteration scheme that implements an error estimator to adaptively refine
    a mesh, in order to reduce the error of the electric field solution.
    This function is mainly used for small objects in a domain.

    If you want to continue from previous iteration, you have to give the mesh, field values,
    convergence list and previous refinements as input arguments."""

    # Find cells that are active in the forward modeling (cells below surface)
    ind_active = surface2ind_topo(mesh, surface)

    # Define mapping from model to active cells
    model_map = maps.InjectActiveCells(mesh, ind_active, par_background)

    # Define model. Models in SimPEG are vector arrays
    model = par_background * np.ones(ind_active.sum())
    if type_object == 'block':
        ind_object = get_ind_block(mesh, ind_active, coordinates, axis,
                                   degrees_rad)
    if type_object == 'sphere':
        ind_object = get_ind_sphere(mesh, ind_active, coordinates, radius)

    model[ind_object] = par_object

    diff = 10
    if diff_list[0, 0] == 0:
        i = 0
        av_diff_list = []
        refine_at_object_list = []
        refine_at_receivers_list = []
        refine_at_sources_list = []
    # Starting after the pause
    else:
        i = diff_list[-1, 0]
        av_diff_list = list(diff_list)
        refine_at_object_list = r_a_o_list
        refine_at_receivers_list = r_a_r_list
        refine_at_sources_list = r_a_s_list
        lim_iterations = lim_iterations + i
        ef_old_x = Ex
        ef_old_y = Ey
        ef_old_z = Ez

    def ef_interpolator(x):
        return np.array([ef_x(*x), ef_y(*x), ef_z(*x)])

    def ef_old_interpolator(x):
        return np.array([ef_old_x(*x), ef_old_y(*x), ef_old_z(*x)])

    while diff > 0.01 and i < lim_iterations:
        # Maximum relative difference between current and previous iteration should fall below 1% in order to converge.

        # Define search areas
        search_area_obj = search_area_object(mesh, objct, factor=factor_object)
        search_area_receiv = search_area_receivers(mesh,
                                                   receiver_locations,
                                                   factor=factor_receiver)
        search_area_sourc = search_area_sources(mesh,
                                                source_locations,
                                                factor=factor_source)
        # Interpolate curl and electric field
        curl_x, curl_y, curl_z, ef_x, ef_y, ef_z = estimate_curl_electric_field(
            mesh,
            survey,
            model_map,
            model,
            interpolation=interpolation,
            frequency=frequency,
            omega=omega,
            parameter=parameter)
        # Compare electric field values until relative difference falls below 1%
        if diff_list[0, 0] == 0:
            if i > 0:
                relative_difference_Efield = []
                for cell in search_area_obj:
                    # This equation is sensitive to catastrophic failure
                    form = np.abs(
                        (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                        ef_old_interpolator(cell))
                    relative_difference_Efield.append(np.linalg.norm(form))
                for cell in search_area_receiv:
                    # This equation is sensitive to catastrophic failure
                    form = np.abs(
                        (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                        ef_old_interpolator(cell))
                    relative_difference_Efield.append(np.linalg.norm(form))
                for cell in search_area_sourc:
                    # This equation is sensitive to catastrophic failure
                    form = np.abs(
                        (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                        ef_old_interpolator(cell))
                    relative_difference_Efield.append(np.linalg.norm(form))

                diff = sum(relative_difference_Efield) / len(
                    relative_difference_Efield)
                av_diff_list.append([i + 1, diff])
                print("Average relative difference is ", diff)
        else:
            relative_difference_Efield = []
            for cell in search_area_obj:
                # This equation is sensitive to catastrophic failure
                form = np.abs(
                    (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                    ef_old_interpolator(cell))
                relative_difference_Efield.append(np.linalg.norm(form))
            for cell in search_area_receiv:
                # This equation is sensitive to catastrophic failure
                form = np.abs(
                    (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                    ef_old_interpolator(cell))
                relative_difference_Efield.append(np.linalg.norm(form))
            for cell in search_area_sourc:
                # This equation is sensitive to catastrophic failure
                form = np.abs(
                    (ef_old_interpolator(cell) - ef_interpolator(cell)) /
                    ef_old_interpolator(cell))
                relative_difference_Efield.append(np.linalg.norm(form))

            diff = sum(relative_difference_Efield) / len(
                relative_difference_Efield)
            av_diff_list.append([i + 1, diff])
            print("Average relative difference is ", diff)

        ef_old_x = ef_x
        ef_old_y = ef_y
        ef_old_z = ef_z

        # Define cells to refine near object
        cells_to_refine_object = estimate_error(
            search_area_obj,
            curl_x,
            curl_y,
            curl_z,
            ef_x,
            ef_y,
            ef_z,
            refine_percentage=refine_percentage)
        refine_at_object_list.append(cells_to_refine_object)
        # Define cells to refine near receivers
        cells_to_refine_receivers = estimate_error(
            search_area_receiv,
            curl_x,
            curl_y,
            curl_z,
            ef_x,
            ef_y,
            ef_z,
            refine_percentage=refine_percentage)
        refine_at_receivers_list.append(cells_to_refine_receivers)
        # Define cells to refine near sources
        cells_to_refine_sources = estimate_error(
            search_area_sourc,
            curl_x,
            curl_y,
            curl_z,
            ef_x,
            ef_y,
            ef_z,
            refine_percentage=refine_percentage)
        refine_at_sources_list.append(cells_to_refine_sources)
        # Refine the mesh
        mesh = create_octree_mesh(domain, cell_width, objct, 'surface')
        refine_at_locations(mesh, source_locations)
        refine_at_locations(mesh, receiver_locations)
        for refo in refine_at_object_list:
            refine_at_locations(mesh, refo)
        for refr in refine_at_receivers_list:
            refine_at_locations(mesh, refr)
        for refs in refine_at_sources_list:
            refine_at_locations(mesh, refs)
        mesh.finalize()

        # Find cells that are active in the forward modeling (cells below surface)
        ind_active = surface2ind_topo(mesh, surface)

        # Define mapping from model to active cells
        model_map = maps.InjectActiveCells(mesh, ind_active, par_background)

        # Define model. Models in SimPEG are vector arrays
        model = par_background * np.ones(ind_active.sum())
        if type_object == 'block':
            ind_object = get_ind_block(mesh, ind_active, coordinates)
        if type_object == 'sphere':
            ind_object = get_ind_sphere(mesh, ind_active, coordinates, radius)

        model[ind_object] = par_object
        print(i)
        i += 1
    if diff < 0.01:
        return mesh, ef_x, ef_y, ef_z, np.array(av_diff_list)
    else:
        return mesh, ef_x, ef_y, ef_z, np.array(
            av_diff_list
        ), refine_at_object_list, refine_at_receivers_list, refine_at_sources_list
    def setUp(self):
        np.random.seed(0)
        H0 = (50000.0, 90.0, 0.0)

        # The magnetization is set along a different
        # direction (induced + remanence)
        M = np.array([45.0, 90.0])

        # Create grid of points for topography
        # Lets create a simple Gaussian topo
        # and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))

        # We would usually load a topofile
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(xyzLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        mesh = mesh_builder_xyz(xyzLoc,
                                h,
                                padding_distance=padDist,
                                depth_core=100,
                                mesh_type="tree")
        mesh = refine_tree_xyz(mesh,
                               topo,
                               method="surface",
                               octree_levels=[4, 4],
                               finalize=True)
        self.mesh = mesh
        # Define an active cells from topo
        actv = utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        model = np.zeros((mesh.nC, 3))

        # Convert the inclination declination to vector in Cartesian
        M_xyz = utils.mat_utils.dip_azimuth2cartesian(M[0], M[1])

        # Get the indicies of the magnetized block
        ind = utils.model_builder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization values
        model[ind, :] = np.kron(np.ones((ind.shape[0], 1)), M_xyz * 0.05)

        # Remove air cells
        self.model = model[actv, :]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC * 3)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            model_type="vector",
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="disk",
        )
        self.sim = sim

        # Compute some data and add some random noise
        data = sim.make_synthetic_data(utils.mkvc(self.model),
                                       relative_error=0.0,
                                       noise_floor=5.0,
                                       add_noise=True)

        # This Mapping connects the regularizations for the three-component
        # vector model
        wires = maps.Wires(("p", nC), ("s", nC), ("t", nC))

        # Create three regularization for the different components
        # of magnetization
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.p)
        reg_p.mref = np.zeros(3 * nC)

        reg_s = regularization.Sparse(mesh, indActive=actv, mapping=wires.s)
        reg_s.mref = np.zeros(3 * nC)

        reg_t = regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
        reg_t.mref = np.zeros(3 * nC)

        reg = reg_p + reg_s + reg_t
        reg.mref = np.zeros(3 * nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)
        # dmis.W = 1./survey.std

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=10,
                                         lower=-10,
                                         upper=10.0,
                                         maxIterLS=5,
                                         maxIterCG=5,
                                         tolCG=1e-4)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # A list of directive to control the inverson
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1)

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      max_irls_iterations=0,
                                      beta_tol=5e-1)

        # Pre-conditioner
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        inv = inversion.BaseInversion(
            invProb,
            directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest])

        # Run the inversion
        m0 = np.ones(3 * nC) * 1e-4  # Starting model
        mrec_MVIC = inv.run(m0)

        sim.chiMap = maps.SphericalSystem(nP=nC * 3)
        self.mstart = sim.chiMap.inverse(mrec_MVIC)
        dmis.simulation.model = self.mstart
        beta = invProb.beta

        # Create a block diagonal regularization
        wires = maps.Wires(("amp", nC), ("theta", nC), ("phi", nC))

        # Create a Combo Regularization
        # Regularize the amplitude of the vectors
        reg_a = regularization.Sparse(mesh, indActive=actv, mapping=wires.amp)
        reg_a.norms = np.c_[0.0, 0.0, 0.0,
                            0.0]  # Sparse on the model and its gradients
        reg_a.mref = np.zeros(3 * nC)

        # Regularize the vertical angle of the vectors
        reg_t = regularization.Sparse(mesh,
                                      indActive=actv,
                                      mapping=wires.theta)
        reg_t.alpha_s = 0.0  # No reference angle
        reg_t.space = "spherical"
        reg_t.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        # Regularize the horizontal angle of the vectors
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.phi)
        reg_p.alpha_s = 0.0  # No reference angle
        reg_p.space = "spherical"
        reg_p.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        reg = reg_a + reg_t + reg_p
        reg.mref = np.zeros(3 * nC)

        Lbound = np.kron(np.asarray([0, -np.inf, -np.inf]), np.ones(nC))
        Ubound = np.kron(np.asarray([10, np.inf, np.inf]), np.ones(nC))

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(
            maxIter=5,
            lower=Lbound,
            upper=Ubound,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-3,
            stepOffBoundsFact=1e-3,
        )
        opt.approxHinv = None

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta)

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(
            f_min_change=1e-4,
            max_irls_iterations=5,
            minGNiter=1,
            beta_tol=0.5,
            coolingRate=1,
            coolEps_q=True,
            sphericalDomain=True,
        )

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        ProjSpherical = directives.ProjectSphericalBounds()
        sensitivity_weights = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()

        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[
                ProjSpherical, IRLS, sensitivity_weights, update_Jacobi
            ],
        )
Exemple #14
0
    def setUp(self):

        ndv = -100
        # Create a self.mesh
        dx = 5.0

        hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hzind = [(dx, 5, -1.3), (dx, 6)]

        self.mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        # Get index of the center
        midx = int(self.mesh.nCx / 2)
        midy = int(self.mesh.nCy / 2)

        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(self.mesh.vectorNx, self.mesh.vectorNy)
        zz = -np.exp((xx**2 + yy**2) / 75**2) + self.mesh.vectorNz[-1]

        # Go from topo to actv cells
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]
        actv = utils.surface2ind_topo(self.mesh, topo, "N")
        actv = np.where(actv)[0]

        # Create active map to go from reduce space to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, -100)
        nC = len(actv)

        # Create and array of observation points
        xr = np.linspace(-20.0, 20.0, 20)
        yr = np.linspace(-20.0, 20.0, 20)
        X, Y = np.meshgrid(xr, yr)

        # Move the observation points 5m above the topo
        Z = -np.exp((X**2 + Y**2) / 75**2) + self.mesh.vectorNz[-1] + 5.0

        # Create a MAGsurvey
        locXYZ = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = gravity.Point(locXYZ)
        srcField = gravity.SourceField([rxLoc])
        survey = gravity.Survey(srcField)

        # We can now create a density model and generate data
        # Here a simple block in half-space
        model = np.zeros((self.mesh.nCx, self.mesh.nCy, self.mesh.nCz))
        model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.5
        model = utils.mkvc(model)
        self.model = model[actv]

        # Create active map to go from reduce set to full
        actvMap = maps.InjectActiveCells(self.mesh, actv, ndv)

        # Create reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        sim = gravity.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            rhoMap=idenMap,
            actInd=actv,
            store_sensitivities="ram",
        )

        # Compute linear forward operator and compute some data
        # computing sensitivities to ram is best using dask processes
        with dask.config.set(scheduler="processes"):
            data = sim.make_synthetic_data(self.model,
                                           relative_error=0.0,
                                           noise_floor=0.001,
                                           add_noise=True)
        print(sim.G)

        # Create a regularization
        reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]
        reg.gradientType = "component"
        # reg.eps_p, reg.eps_q = 5e-2, 1e-2

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=100,
                                         lower=-1.0,
                                         upper=1.0,
                                         maxIterLS=20,
                                         maxIterCG=10,
                                         tolCG=1e-3)
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=1e8)

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(f_min_change=1e-4, minGNiter=1)
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        self.inv = inversion.BaseInversion(
            invProb, directiveList=[IRLS, sensitivity_weights, update_Jacobi])
        self.sim = sim
Exemple #15
0
def run(plotIt=True):

    # Define the inducing field parameter
    H0 = (50000, 90, 0)

    # Create a mesh
    dx = 5.0

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = TensorMesh([hxind, hyind, hzind], "CCC")

    # Get index of the center
    midx = int(mesh.nCx / 2)
    midy = int(mesh.nCy / 2)

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = utils.surface2ind_topo(mesh, topo, "N")
    actv = np.where(actv)[0]
    nC = len(actv)

    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.0

    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.receivers.Point(rxLoc, components=["tmi"])
    srcField = magnetics.sources.SourceField(receiver_list=[rxLoc],
                                             parameters=H0)
    survey = magnetics.survey.Survey(srcField)

    # We can now create a susceptibility model and generate data
    # Here a simple block in half-space
    model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
    model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02
    model = utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, -100)

    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=nC)

    # Create the forward model operator
    simulation = magnetics.simulation.Simulation3DIntegral(
        survey=survey,
        mesh=mesh,
        chiMap=idenMap,
        actInd=actv,
    )

    # Compute linear forward operator and compute some data
    d = simulation.dpred(model)

    # Add noise and uncertainties
    # We add some random Gaussian noise (1nT)
    synthetic_data = d + np.random.randn(len(d))
    wd = np.ones(len(synthetic_data)) * 1.0  # Assign flat uncertainties

    data_object = data.Data(survey, dobs=synthetic_data, noise_floor=wd)

    # Create a regularization
    reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
    reg.mref = np.zeros(nC)
    reg.norms = np.c_[0, 0, 0, 0]
    # reg.eps_p, reg.eps_q = 1e-0, 1e-0

    # Create sensitivity weights from our linear forward operator
    rxLoc = survey.source_field.receiver_list[0].locations
    m0 = np.ones(nC) * 1e-4  # Starting model

    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_object)
    dmis.W = 1 / wd

    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(maxIter=20,
                                     lower=0.0,
                                     upper=1.0,
                                     maxIterLS=20,
                                     maxIterCG=20,
                                     tolCG=1e-3)
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-1)

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.Update_IRLS(f_min_change=1e-3, max_irls_iterations=40)
    saveDict = directives.SaveOutputEveryIteration(save_txt=False)
    update_Jacobi = directives.UpdatePreconditioner()
    # Add sensitivity weights
    sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False)

    inv = inversion.BaseInversion(
        invProb,
        directiveList=[
            sensitivity_weights, IRLS, betaest, update_Jacobi, saveDict
        ],
    )

    # Run the inversion
    mrec = inv.run(m0)

    if plotIt:
        # Here is the recovered susceptibility model
        ypanel = midx
        zpanel = -5
        m_l2 = actvMap * invProb.l2model
        m_l2[m_l2 == -100] = np.nan

        m_lp = actvMap * mrec
        m_lp[m_lp == -100] = np.nan

        m_true = actvMap * model
        m_true[m_true == -100] = np.nan

        # Plot the data
        utils.plot_utils.plot2Ddata(rxLoc, d)

        plt.figure()

        # Plot L2 model
        ax = plt.subplot(321)
        mesh.plotSlice(
            m_l2,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan l2-model.")
        plt.gca().set_aspect("equal")
        plt.ylabel("y")
        ax.xaxis.set_visible(False)
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertica section
        ax = plt.subplot(322)
        mesh.plotSlice(
            m_l2,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W l2-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot Lp model
        ax = plt.subplot(323)
        mesh.plotSlice(
            m_lp,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan lp-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("y")
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertical section
        ax = plt.subplot(324)
        mesh.plotSlice(
            m_lp,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W lp-model.")
        plt.gca().set_aspect("equal")
        ax.xaxis.set_visible(False)
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot True model
        ax = plt.subplot(325)
        mesh.plotSlice(
            m_true,
            ax=ax,
            normal="Z",
            ind=zpanel,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
            color="w",
        )
        plt.title("Plan true model.")
        plt.gca().set_aspect("equal")
        plt.xlabel("x")
        plt.ylabel("y")
        plt.gca().set_aspect("equal", adjustable="box")

        # Vertical section
        ax = plt.subplot(326)
        mesh.plotSlice(
            m_true,
            ax=ax,
            normal="Y",
            ind=midx,
            grid=True,
            clim=(model.min(), model.max()),
        )
        plt.plot(
            ([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
            color="w",
        )
        plt.title("E-W true model.")
        plt.gca().set_aspect("equal")
        plt.xlabel("x")
        plt.ylabel("z")
        plt.gca().set_aspect("equal", adjustable="box")

        # Plot convergence curves
        fig, axs = plt.figure(), plt.subplot()
        axs.plot(saveDict.phi_d, "k", lw=2)
        axs.plot(
            np.r_[IRLS.iterStart, IRLS.iterStart],
            np.r_[0, np.max(saveDict.phi_d)],
            "k:",
        )

        twin = axs.twinx()
        twin.plot(saveDict.phi_m, "k--", lw=2)
        axs.text(
            IRLS.iterStart,
            0,
            "IRLS Steps",
            va="bottom",
            ha="center",
            rotation="vertical",
            size=12,
            bbox={"facecolor": "white"},
        )

        axs.set_ylabel("$\phi_d$", size=16, rotation=0)
        axs.set_xlabel("Iterations", size=14)
        twin.set_ylabel("$\phi_m$", size=16, rotation=0)
Exemple #16
0
frequencies = [1.0]  # Frequency (Hz)
omegas = [2.0 * np.pi]  # Radial frequency (Hz)
survey = utils.define_survey(frequencies, receiver_locations, source_locations,
                             ntx)

# Refine at certain locations
M.refine_at_locations(mesh, source_locations)
M.refine_at_locations(mesh, receiver_locations)
mesh.finalize()

# Resistivity in Ohm m
res_background = 1.0
res_block = 100.0

# Find cells that are active in the forward modeling (cells below surface)
ind_active = surface2ind_topo(mesh, surface)

# Define mapping from model to active cells
model_map = maps.InjectActiveCells(mesh, ind_active, res_background)

# Define model. Models in SimPEG are vector arrays
model = res_background * np.ones(ind_active.sum())
ind_block = utils.get_ind_block(mesh, ind_active, box_coordinates)
model[ind_block] = res_block

# Run the adaptive meshing algorithm
mesh, ex, ey, ez, diff_list = iterator(mesh,
                                       domain,
                                       surface,
                                       cell_width,
                                       box_surface,
Exemple #17
0
def run(
    plotIt=True,
    survey_type="dipole-dipole",
    rho_background=1e3,
    rho_block=1e2,
    block_x0=100,
    block_dx=10,
    block_y0=-10,
    block_dy=5,
):

    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = DCutils.gen_DCIPsurvey(endl,
                                    survey_type=survey_type,
                                    dim=2,
                                    a=10,
                                    b=10,
                                    n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    # Flat topography
    actind = utils.surface2ind_topo(
        mesh, np.c_[mesh.vectorCCx, mesh.vectorCCx * 0.0])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")
    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    parametric_block = maps.ParametricBlock(mesh, slopeFact=1e2)
    mapping = maps.ExpMap(mesh) * parametric_block
    # Set true model
    # val_background,val_block, block_x0, block_dx, block_y0, block_dy
    mtrue = np.r_[np.log(1e3), np.log(10), 100, 10, -20, 10]

    # Set initial model
    m0 = np.r_[np.log(rho_background),
               np.log(rho_block), block_x0, block_dx, block_y0, block_dy, ]
    rho = mapping * mtrue
    rho0 = mapping * m0
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("True resistivity model")
    plt.show()
    # Show the true conductivity model
    fig = plt.figure(figsize=(12, 3))
    ax = plt.subplot(111)
    temp = rho0.copy()
    temp[~actind] = np.nan
    out = mesh.plotImage(
        temp,
        grid=False,
        ax=ax,
        gridOpts={"alpha": 0.2},
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
    )
    ax.plot(survey.electrode_locations[:, 0], survey.electrode_locations[:, 1],
            "k.")
    ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
    ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
    cb = plt.colorbar(out[0])
    cb.set_label("Resistivity (ohm-m)")
    ax.set_aspect("equal")
    ax.set_title("Initial resistivity model")
    plt.show()

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               solver=Solver)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    # Show apparent resisitivty pseudo-section
    IO.plotPseudoSection(data=data.dobs / IO.G,
                         data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    fig = plt.figure()
    out = hist(data.dobs / IO.G, bins=20)
    plt.show()
    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    mesh_1d = discretize.TensorMesh([parametric_block.nP])
    # Related to inversion
    reg = regularization.Simple(mesh_1d, alpha_x=0.0)
    opt = optimization.InexactGaussNewton(maxIter=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    invProb.beta = 0.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_true = rho.copy()
    # show recovered conductivity
    vmin, vmax = rho.min(), rho.max()
    fig, ax = plt.subplots(2, 1, figsize=(20, 6))
    out1 = mesh.plotImage(
        rho_true,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[0],
    )
    out2 = mesh.plotImage(
        rho_est,
        clim=(10, 1000),
        pcolorOpts={
            "cmap": "viridis",
            "norm": colors.LogNorm()
        },
        ax=ax[1],
    )
    out = [out1, out2]
    for i in range(2):
        ax[i].plot(survey.electrode_locations[:, 0],
                   survey.electrode_locations[:, 1], "kv")
        ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[i][0], ax=ax[i])
        cb.set_label("Resistivity ($\Omega$m)")
        ax[i].set_xlabel("Northing (m)")
        ax[i].set_ylabel("Elevation (m)")
        ax[i].set_aspect("equal")
    ax[0].set_title("True resistivity model")
    ax[1].set_title("Recovered resistivity model")
    plt.tight_layout()
    plt.show()
mesh.finalize()


###############################################################
# Project Surveys to Discretized Topography
# -----------------------------------------
#
# It is important that electrodes are not model as being in the air. Even if the
# electrodes are properly located along surface topography, they may lie above
# the discretized topography. This step is carried out to ensure all electrodes
# like on the discretized surface.
#

# Find cells that lie below surface topography
ind_active = surface2ind_topo(mesh, topo_xyz[:, [0, 2]])

# Shift electrodes to the surface of discretized topography
survey.drape_electrodes_on_topography(mesh, ind_active, option="top")

########################################################
# Starting/Reference Model and Mapping on OcTree Mesh
# ---------------------------------------------------
#
# Here, we would create starting and/or reference models for the DC inversion as
# well as the mapping from the model space to the active cells. Starting and
# reference models can be a constant background value or contain a-priori
# structures. Here, the starting model is the natural log of 0.01 S/m.
#

# Define conductivity model in S/m (or resistivity model in Ohm m)
def run(plotIt=True, survey_type="dipole-dipole"):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey_dc = gen_DCIPsurvey(endl,
                               survey_type=survey_type,
                               dim=2,
                               a=10,
                               b=10,
                               n=10)
    survey_dc = IO.from_abmn_locations_to_survey(
        survey_dc.locations_a,
        survey_dc.locations_b,
        survey_dc.locations_m,
        survey_dc.locations_n,
        survey_type,
        data_dc_type="volt",
        data_ip_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey_dc.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build conductivity and chargeability model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    blk_inds_charg = utils.model_builder.getIndicesSphere(
        np.r_[100.0, -25], 12.5, mesh.gridCC)
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma
    charg = np.zeros(mesh.nC)
    charg[blk_inds_charg] = 0.1

    # Show the true conductivity model
    if plotIt:
        fig, axs = plt.subplots(2, 1, figsize=(12, 6))
        temp_rho = rho.copy()
        temp_rho[~actind] = np.nan
        temp_charg = charg.copy()
        temp_charg[~actind] = np.nan

        out1 = mesh.plotImage(
            temp_rho,
            grid=True,
            ax=axs[0],
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        out2 = mesh.plotImage(
            temp_charg,
            grid=True,
            ax=axs[1],
            gridOpts={"alpha": 0.2},
            clim=(0, 0.1),
            pcolorOpts={"cmap": "magma"},
        )
        for i in range(2):
            axs[i].plot(
                survey_dc.electrode_locations[:, 0],
                survey_dc.electrode_locations[:, 1],
                "kv",
            )
            axs[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            axs[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            axs[i].set_aspect("equal")
        cb = plt.colorbar(out1[0], ax=axs[0])
        cb.set_label("Resistivity (ohm-m)")
        cb = plt.colorbar(out2[0], ax=axs[1])
        cb.set_label("Chargeability")

        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue_dc for resistivity
    mtrue_dc = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey_dc,
                               rhoMap=mapping,
                               storeJ=True,
                               solver=Solver)

    # Make synthetic DC data with 5% Gaussian noise
    data_dc = prb.make_synthetic_data(mtrue_dc,
                                      relative_error=0.05,
                                      add_noise=True)
    IO.data_dc = data_dc.dobs

    # Generate mtrue_ip for chargability
    mtrue_ip = charg[actind]
    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    survey_ip = IP.from_dc_to_ip_survey(survey_dc, dim="2.5D")
    prb_ip = IP.Simulation2DNodal(mesh,
                                  survey=survey_ip,
                                  etaMap=actmap,
                                  storeJ=True,
                                  rho=rho,
                                  solver=Solver)

    data_ip = prb_ip.make_synthetic_data(mtrue_ip,
                                         relative_error=0.05,
                                         add_noise=True)

    IO.data_ip = data_ip.dobs

    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data_type="apparent_resistivity",
                             scale="log",
                             cmap="viridis")
        plt.show()

    # Show apparent chargeability pseudo-section
    if plotIt:
        IO.plotPseudoSection(data_type="apparent_chargeability",
                             scale="linear",
                             cmap="magma")
        plt.show()

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure(figsize=(10, 4))
        ax1 = plt.subplot(121)
        out = hist(np.log10(abs(IO.voltages)), bins=20)
        ax1.set_xlabel("log10 DC voltage (V)")
        ax2 = plt.subplot(122)
        out = hist(IO.apparent_resistivity, bins=20)
        ax2.set_xlabel("Apparent Resistivity ($\Omega$m)")
        plt.tight_layout()
        plt.show()

    # Set initial model based upon histogram
    m0_dc = np.ones(actmap.nP) * np.log(100.0)
    # Set standard deviation
    # floor
    data_dc.noise_floor = 10**(-3.2)
    # percentage
    data_dc.relative_error = 0.05

    mopt_dc, pred_dc = DC.run_inversion(m0_dc,
                                        prb,
                                        data_dc,
                                        actind,
                                        mesh,
                                        beta0_ratio=1e0,
                                        use_sensitivity_weight=True)

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt_dc
    rho_est[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(
                survey_dc.electrode_locations[:, 0],
                survey_dc.electrode_locations[:, 1],
                "kv",
            )
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
        plt.tight_layout()
        plt.show()

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure(figsize=(10, 4))
        ax1 = plt.subplot(121)
        out = hist(np.log10(abs(IO.voltages_ip)), bins=20)
        ax1.set_xlabel("log10 IP voltage (V)")
        ax2 = plt.subplot(122)
        out = hist(IO.apparent_chargeability, bins=20)
        ax2.set_xlabel("Apparent Chargeability (V/V)")
        plt.tight_layout()
        plt.show()

    # Set initial model based upon histogram
    m0_ip = np.ones(actmap.nP) * 1e-10
    # Set standard deviation
    # floor
    data_ip.noise_floor = 10**(-4)
    # percentage
    data_ip.relative_error = 0.05
    # Clean sensitivity function formed with true resistivity
    prb_ip._Jmatrix = None
    # Input obtained resistivity to form sensitivity
    prb_ip.rho = mapping * mopt_dc
    mopt_ip, _ = IP.run_inversion(
        m0_ip,
        prb_ip,
        data_ip,
        actind,
        mesh,
        upper=np.Inf,
        lower=0.0,
        beta0_ratio=1e0,
        use_sensitivity_weight=True,
    )

    # Convert obtained inversion model to chargeability
    # charg = M(m), where M(.) is a mapping for cells below topography

    charg_est = actmap * mopt_ip
    charg_est[~actind] = np.nan
    charg_true = charg.copy()
    charg_true[~actind] = np.nan

    # show recovered chargeability
    if plotIt:
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(charg_true,
                              clim=(0, 0.1),
                              pcolorOpts={"cmap": "magma"},
                              ax=ax[0])
        out2 = mesh.plotImage(charg_est,
                              clim=(0, 0.1),
                              pcolorOpts={"cmap": "magma"},
                              ax=ax[1])
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(
                survey_dc.electrode_locations[:, 0],
                survey_dc.electrode_locations[:, 1],
                "rv",
            )
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
        plt.tight_layout()
        plt.show()
Exemple #20
0
# Starting/Reference Model and Mapping on Tensor Mesh
# ---------------------------------------------------
#
# Here, we create starting and/or reference models for the inversion as
# well as the mapping from the model space to the active cells. Starting and
# reference models can be a constant background value or contain a-priori
# structures. Here, the background is 1e-6 g/cc.
#

# Define density contrast values for each unit in g/cc. Don't make this 0!
# Otherwise the gradient for the 1st iteration is zero and the inversion will
# not converge.
background_density = 1e-6

# Find the indecies of the active cells in forward model (ones below surface)
ind_active = surface2ind_topo(mesh, xyz_topo)

# Define mapping from model to active cells
nC = int(ind_active.sum())
model_map = maps.IdentityMap(
    nP=nC)  # model consists of a value for each active cell

# Define and plot starting model
starting_model = background_density * np.ones(nC)

##############################################
# Define the Physics
# ------------------
#
# Here, we define the physics of the gravity problem by using the simulation
# class.
Exemple #21
0
mesh = refine_box(mesh)
mesh.finalize()

background_value = 100.0
dyke_value = 40.0
block_value = 70.0

# Define surface topography as an (N, 3) np.array. You could also load a file
# containing the xyz points
[xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
zz = -3 * np.exp((xx**2 + yy**2) / 60**2) + 45.0
topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)]

# Find cells below topography and define mapping
air_value = 0.0
ind_active = surface2ind_topo(mesh, topo)
model_map = maps.InjectActiveCells(mesh, ind_active, air_value)

# Define the model on subsurface cells
model = background_value * np.ones(ind_active.sum())
ind_dyke = (mesh.gridCC[ind_active, 0] > 20.0) & (mesh.gridCC[ind_active, 0] <
                                                  40.0)
model[ind_dyke] = dyke_value
ind_block = ((mesh.gridCC[ind_active, 0] > -40.0)
             & (mesh.gridCC[ind_active, 0] < -10.0)
             & (mesh.gridCC[ind_active, 1] > -30.0)
             & (mesh.gridCC[ind_active, 1] < 30.0)
             & (mesh.gridCC[ind_active, 2] > -40.0)
             & (mesh.gridCC[ind_active, 2] < 0.0))
model[ind_block] = block_value
Exemple #22
0
            "colors": "k",
            "linewidths": 2,
            "linestyles": "--"
        },
        method="nearest",
    )
plt.subplots_adjust(hspace=-0.25, wspace=0.1)
plt.show()

# Load Topo
topo_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/CDED_Lake_warp.xyz"
)
topo = np.genfromtxt(topo_file, skip_header=1)
# find the active cells
actv = utils.surface2ind_topo(mesh, topo, gridLoc="CC")
# Create active map to go from reduce set to full
ndv = np.nan
actvMap = maps.InjectActiveCells(mesh, actv, ndv)
nactv = int(actv.sum())

# Create simulations and data misfits
# Wires mapping
wires = maps.Wires(("den", actvMap.nP), ("sus", actvMap.nP))
gravmap = actvMap * wires.den
magmap = actvMap * wires.sus
idenMap = maps.IdentityMap(nP=nactv)
# Grav problem
simulation_grav = pf.gravity.simulation.Simulation3DIntegral(
    survey=data_grav.survey,
    mesh=mesh,
Exemple #23
0
def run(plotIt=True):

    H0 = (50000.0, 90.0, 0.0)

    # Create a mesh
    dx = 5.0

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx ** 2 + yy ** 2) / 75 ** 2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = utils.surface2ind_topo(mesh, topo, "N")
    actv = np.where(actv)[0]

    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X ** 2 + Y ** 2) / 75 ** 2) + mesh.vectorNz[-1] + 5.0

    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.Point(rxLoc)
    srcField = magnetics.SourceField([rxLoc], parameters=H0)
    survey = magnetics.Survey(srcField)

    # We can now create a susceptibility model and generate data
    model = np.zeros(mesh.nC)

    # Change values in half the domain
    model[mesh.gridCC[:, 0] < 0] = 0.01

    # Add a block in half-space
    model = utils.model_builder.addBlock(
        mesh.gridCC, model, np.r_[-10, -10, 20], np.r_[10, 10, 40], 0.05
    )

    model = utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=len(actv))

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh,
        survey=survey,
        chiMap=idenMap,
        actInd=actv,
        store_sensitivities="forward_only",
    )

    # Compute linear forward operator and compute some data
    data = prob.make_synthetic_data(
        model, relative_error=0.0, noise_floor=1, add_noise=True
    )

    # Create a homogenous maps for the two domains
    domains = [mesh.gridCC[actv, 0] < 0, mesh.gridCC[actv, 0] >= 0]
    homogMap = maps.SurjectUnits(domains)

    # Create a wire map for a second model space, voxel based
    wires = maps.Wires(("h**o", len(domains)), ("hetero", len(actv)))

    # Create Sum map
    sumMap = maps.SumMap([homogMap * wires.h**o, wires.hetero])

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh, survey=survey, chiMap=sumMap, actInd=actv, store_sensitivities="ram"
    )

    # Make depth weighting
    wr = np.zeros(sumMap.shape[1])
    print(prob.nC)
    # print(prob.M.shape) # why does this reset nC
    G = prob.G

    # Take the cell number out of the scaling.
    # Want to keep high sens for large volumes
    scale = utils.sdiag(
        np.r_[utils.mkvc(1.0 / homogMap.P.sum(axis=0)), np.ones_like(actv)]
    )

    for ii in range(survey.nD):
        wr += (
            (prob.G[ii, :] * prob.chiMap.deriv(np.ones(sumMap.shape[1]) * 1e-4) * scale)
            / data.standard_deviation[ii]
        ) ** 2.0

    # Scale the model spaces independently
    wr[wires.h**o.index] /= np.max((wires.h**o * wr))
    wr[wires.hetero.index] /= np.max(wires.hetero * wr)
    wr = wr ** 0.5

    ## Create a regularization
    # For the homogeneous model
    regMesh = discretize.TensorMesh([len(domains)])

    reg_m1 = regularization.Sparse(regMesh, mapping=wires.h**o)
    reg_m1.cell_weights = wires.h**o * wr
    reg_m1.norms = np.c_[0, 2, 2, 2]
    reg_m1.mref = np.zeros(sumMap.shape[1])

    # Regularization for the voxel model
    reg_m2 = regularization.Sparse(mesh, indActive=actv, mapping=wires.hetero)
    reg_m2.cell_weights = wires.hetero * wr
    reg_m2.norms = np.c_[0, 1, 1, 1]
    reg_m2.mref = np.zeros(sumMap.shape[1])

    reg = reg_m1 + reg_m2

    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)

    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(
        maxIter=100,
        lower=0.0,
        upper=1.0,
        maxIterLS=20,
        maxIterCG=10,
        tolCG=1e-3,
        tolG=1e-3,
        eps=1e-6,
    )
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig()

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.Update_IRLS(f_min_change=1e-3, minGNiter=1)
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[IRLS, betaest, update_Jacobi])

    # Run the inversion
    m0 = np.ones(sumMap.shape[1]) * 1e-4  # Starting model
    prob.model = m0
    mrecSum = inv.run(m0)
    if plotIt:

        mesh.plot_3d_slicer(
            actvMap * model,
            aspect="equal",
            zslice=30,
            pcolorOpts={"cmap": "inferno_r"},
            transparent="slider",
        )

        mesh.plot_3d_slicer(
            actvMap * sumMap * mrecSum,
            aspect="equal",
            zslice=30,
            pcolorOpts={"cmap": "inferno_r"},
            transparent="slider",
        )