Exemple #1
0
def test_fitting_beta_binomial():

    print("\nTesting Beta-Binomial with n=100, a=2, b=3, loc=1, scale=2:")
    dist = RVGs.BetaBinomial(n=20, a=2, b=3, loc=1)
    print('  percentile interval: ', dist.get_percentile_interval(alpha=0.05))

    data = np.array(get_samples(dist, np.random))
    # method of moment
    dict_mm_results = RVGs.BetaBinomial.fit_mm(mean=np.mean(data),
                                               st_dev=np.std(data),
                                               n=20,
                                               fixed_location=1)
    # maximum likelihood
    dict_ml_results = RVGs.BetaBinomial.fit_ml(data=data, fixed_location=1)

    print("  Fit:")
    print("    MM:", dict_mm_results)
    print("    ML:", dict_ml_results)

    # plot the fitted distributions
    Plot.plot_beta_binomial_fit(data=data,
                                fit_results=dict_mm_results,
                                title='Method of Moment')
    Plot.plot_beta_binomial_fit(data=data,
                                fit_results=dict_ml_results,
                                title='Maximum Likelihood')
print('Fitting a Poisson distribution:', fit_results)

# plot the fitted Poisson distribution
Plot.plot_poisson_fit(data=cols[0],
                      fit_results=fit_results,
                      x_label='Weekly number of drinks',
                      x_range=(0, 40),
                      bin_width=1)

# fit a gamma-Poisson distribution
fit_results = RVGs.GammaPoisson.fit_ml(data=cols[0])
print('Fitting a gamma-Poisson distribution:', fit_results)

# plot the fitted gamma-Poisson distribution
Plot.plot_gamma_poisson_fit(data=cols[0],
                            fit_results=fit_results,
                            x_label='Weekly number of drinks',
                            x_range=(0, 40),
                            bin_width=1)

# fit a beta-binomial distribution
fit_results = RVGs.BetaBinomial.fit_ml(data=cols[0])
print('Fitting a beta-binomial distribution:', fit_results)

# plot the fitted beta-binomial distribution
Plot.plot_beta_binomial_fit(data=cols[0],
                            fit_results=fit_results,
                            x_label='Weekly number of drinks',
                            x_range=(0, 40),
                            bin_width=1)