Exemple #1
0
def report_CEA_CBA(sim_outcomes_none, sim_outcomes_anticoag):
    """ performs cost-effectiveness and cost-benefit analyses
    :param sim_outcomes_none: outcomes of a cohort simulated under no therapy
    :param sim_outcomes_anticoag: outcomes of a cohort simulated under anticoagultation therapy
    """

    # define two strategies
    no_therapy_strategy = Econ.Strategy(
        name='No Therapy',
        cost_obs=sim_outcomes_none.costs,
        effect_obs=sim_outcomes_none.utilities,
        color='red'
    )
    anticoag_therapy_strategy = Econ.Strategy(
        name='Anticoagulation Therapy',
        cost_obs=sim_outcomes_anticoag.costs,
        effect_obs=sim_outcomes_anticoag.utilities,
        color='blue'
    )

    # do cost-effectiveness analysis
    # (the first strategy in the list of strategies is assumed to be the 'Base' strategy)
    CEA = Econ.CEA(
        strategies=[no_therapy_strategy, anticoag_therapy_strategy],
        if_paired=False
    )

    # plot cost-effectiveness figure
    CEA.plot_CE_plane(
        title='Cost-Effectiveness Analysis',
        x_label='Additional QALYs',
        y_label='Additional Cost',
        x_range=(-0.6, 1.5),
        y_range=(-5000, 50000),
        interval_type='c'
    )

    # report the CE table
    CEA.build_CE_table(
        interval_type='c',
        alpha=D.ALPHA,
        cost_digits=0,
        effect_digits=2,
        icer_digits=2)

    # cost-benefit analysis
    CBA = Econ.CBA(
        strategies=[no_therapy_strategy, anticoag_therapy_strategy],
        wtp_range=[0, 100000],
        if_paired=False
    )
    # show the net monetary benefit figure
    CBA.plot_incremental_nmbs(
        title='Cost-Benefit Analysis',
        x_label='Willingness-to-pay per QALY ($)',
        y_label='Incremental Net Monetary Benefit ($)',
        interval_type='c',
        show_legend=True,
        figure_size=(6, 5)
    )
def report_CEA_CBA(multi_cohort_outcomes_mono, multi_cohort_outcomes_combo):
    """ performs cost-effectiveness and cost-benefit analyses
    :param multi_cohort_outcomes_mono: outcomes of a multi-cohort simulated under mono therapy
    :param multi_cohort_outcomes_combo: outcomes of a multi-cohort simulated under combination therapy
    """

    # define two strategies
    mono_therapy_strategy = Econ.Strategy(
        name='Mono Therapy',
        cost_obs=multi_cohort_outcomes_mono.meanCosts,
        effect_obs=multi_cohort_outcomes_mono.meanQALYs,
        color='green')
    combo_therapy_strategy = Econ.Strategy(
        name='Combination Therapy',
        cost_obs=multi_cohort_outcomes_combo.meanCosts,
        effect_obs=multi_cohort_outcomes_combo.meanQALYs,
        color='blue')

    # do CEA
    CEA = Econ.CEA(strategies=[mono_therapy_strategy, combo_therapy_strategy],
                   if_paired=True)

    # show the cost-effectiveness plane
    CEA.plot_CE_plane(title='Cost-Effectiveness Analysis',
                      x_label='Additional Discounted QALY',
                      y_label='Additional Discounted Cost',
                      fig_size=(6, 5),
                      add_clouds=True,
                      transparency=0.2)

    # report the CE table
    CEA.build_CE_table(
        interval_type='p',  # uncertainty (projection) interval
        alpha=D.ALPHA,
        cost_digits=0,
        effect_digits=2,
        icer_digits=2,
        file_name='CETable.csv')

    # CBA
    NBA = Econ.CBA(strategies=[mono_therapy_strategy, combo_therapy_strategy],
                   wtp_range=(0, 50000),
                   if_paired=True)
    # show the net monetary benefit figure
    NBA.plot_incremental_nmbs(
        title='Cost-Benefit Analysis',
        x_label='Willingness-To-Pay for One Additional QALY ($)',
        y_label='Incremental Net Monetary Benefit ($)',
        interval_type='p',
        show_legend=True,
        figure_size=(6, 5),
    )
Exemple #3
0
def report_CEA_CBA(sim_outcomes_none, sim_outcomes_anti):
    """ performs cost-effectiveness and cost-benefit analyses
    :param sim_outcomes_mono: outcomes of a cohort simulated under mono therapy
    :param sim_outcomes_combo: outcomes of a cohort simulated under combination therapy
    """

    # define two strategies
    no_therapy_strategy = Econ.Strategy(name='No Anticoagulation ',
                                        cost_obs=sim_outcomes_none.costs,
                                        effect_obs=sim_outcomes_none.utilities,
                                        color='green')
    anti_therapy_strategy = Econ.Strategy(
        name='With Anticoagulation',
        cost_obs=sim_outcomes_anti.costs,
        effect_obs=sim_outcomes_anti.utilities,
        color='blue')

    # do CEA
    CEA = Econ.CEA(strategies=[no_therapy_strategy, anti_therapy_strategy],
                   if_paired=False)

    # plot cost-effectiveness figure
    CEA.plot_CE_plane(title='Cost-Effectiveness Analysis',
                      x_label='Additional QALYs',
                      y_label='Additional Cost',
                      interval_type='c',
                      x_range=(-0.5, 1),
                      y_range=(-1000, 10000))

    # report the CE table
    CEA.build_CE_table(interval_type='c',
                       alpha=D.ALPHA,
                       cost_digits=0,
                       effect_digits=2,
                       icer_digits=2,
                       file_name='CETable.csv')

    # CBA
    NBA = Econ.CBA(strategies=[no_therapy_strategy, anti_therapy_strategy],
                   wtp_range=[0, 50000],
                   if_paired=False)
    # show the net monetary benefit figure
    NBA.plot_incremental_nmbs(title='Cost-Benefit Analysis',
                              x_label='Willingness-to-pay per QALY ($)',
                              y_label='Incremental Net Monetary Benefit ($)',
                              interval_type='c',
                              show_legend=True,
                              figure_size=(6, 5))
from SimPy import EconEval as EV

S0 = EV.Strategy(name='Base', cost_obs=[100], effect_obs=[1])
S1 = EV.Strategy(name='A1', cost_obs=[800], effect_obs=[0.5])
S2 = EV.Strategy(name='A2', cost_obs=[2000], effect_obs=[10])
S3 = EV.Strategy(name='A3', cost_obs=[500], effect_obs=[7])
S4 = EV.Strategy(name='A4', cost_obs=[-100], effect_obs=[2])
S5 = EV.Strategy(name='A5', cost_obs=[200], effect_obs=[2])
S6 = EV.Strategy(name='A6', cost_obs=[1000], effect_obs=[7.2])
S7 = EV.Strategy(name='A7', cost_obs=[1100], effect_obs=[7.3])

cea = EV.CEA(strategies=[S0, S1, S2, S3, S4, S5, S6, S7],
             if_paired=False,
             health_measure='u')

# show the ce plane:
cea.plot_CE_plane()

# build table
cea.build_CE_table(interval_type='n')

print('On frontier')
frontier_strategies = cea.get_strategies_on_frontier()
for i, s in enumerate(frontier_strategies):
    print(s.name)
    if i > 0:
        print('incCost:', s.incCost.get_mean())
        print('incEffect:', s.incEffect.get_mean())
        print('ICER:', s.icer.get_ICER())
Exemple #5
0
    def build_CE_curve(self,
                       save_cea_results=False,
                       interval_type='n',
                       effect_multiplier=1,
                       cost_multiplier=1,
                       switch_cost_effect_on_figure=False,
                       wtp_range=None):

        # cost-effectiveness analysis
        self.CEA = Econ.CEA(self.strategies,
                            if_paired=True,
                            health_measure='d')

        # CBA
        if wtp_range is not None:
            self.CBA = Econ.CBA(self.strategies,
                                wtp_range=wtp_range,
                                if_paired=True,
                                health_measure='d')

        # if to save the results of the CEA
        if save_cea_results:
            self.CEA.build_CE_table(interval_type=interval_type,
                                    file_name='CEA Table-' + self.name +
                                    '.csv',
                                    cost_multiplier=cost_multiplier,
                                    effect_multiplier=effect_multiplier,
                                    effect_digits=0)

        # if the CE frontier should be calculated
        if self.ifFindFrontier:
            # find the (x, y)'s of strategies on the frontier
            for idx, strategy in enumerate(
                    self.CEA.get_strategies_on_frontier()):
                if switch_cost_effect_on_figure:
                    self.frontierXValues.append(strategy.dCost.get_mean() *
                                                cost_multiplier)
                    self.frontierYValues.append(strategy.dEffect.get_mean() *
                                                effect_multiplier)
                else:
                    self.frontierXValues.append(strategy.dEffect.get_mean() *
                                                effect_multiplier)
                    self.frontierYValues.append(strategy.dCost.get_mean() *
                                                cost_multiplier)

                self.frontierLabels.append(strategy.name)

                if interval_type != 'n':
                    effect_interval = strategy.dEffect.get_interval(
                        interval_type=interval_type,
                        alpha=ALPHA,
                        multiplier=effect_multiplier)
                    cost_interval = strategy.dCost.get_interval(
                        interval_type=interval_type,
                        alpha=ALPHA,
                        multiplier=effect_multiplier)
                    if switch_cost_effect_on_figure:
                        self.frontierYIntervals.append(effect_interval)
                        self.frontierXIntervals.append(cost_interval)
                    else:
                        self.frontierXIntervals.append(effect_interval)
                        self.frontierYIntervals.append(cost_interval)

        #else:  # the CE frontier needs not to be calculated

        # find the (x, y) values of strategies to display on CE plane
        # remove the base strategy
        if not self.xyLabelsProvided:
            self.xyLabels = []
        for strategy in [s for s in self.CEA.strategies if s.idx > 0]:
            if switch_cost_effect_on_figure:
                self.allDeltaEffects = np.append(
                    self.allDeltaEffects,
                    strategy.dEffectObs * effect_multiplier)
                self.allDeltaCosts = np.append(
                    self.allDeltaCosts, strategy.dCostObs * cost_multiplier)
                self.xValues.append(strategy.dCost.get_mean() *
                                    cost_multiplier)
                self.yValues.append(strategy.dEffect.get_mean() *
                                    effect_multiplier)

                self.xValuesByScenario.append(strategy.dCostObs *
                                              cost_multiplier)
                self.yValuesByScenario.append(strategy.dEffectObs *
                                              effect_multiplier)
            else:
                self.allDeltaEffects = np.append(
                    self.allDeltaEffects,
                    strategy.effectObs * effect_multiplier)
                self.allDeltaCosts = np.append(
                    self.allDeltaCosts, strategy.costObs * cost_multiplier)
                self.xValues.append(strategy.dEffect.get_mean() *
                                    effect_multiplier)
                self.yValues.append(strategy.dCost.get_mean() *
                                    cost_multiplier)

                self.xValuesByScenario.append(strategy.dEffectObs *
                                              effect_multiplier)
                self.yValuesByScenario.append(strategy.dCostObs *
                                              cost_multiplier)

            if not self.xyLabelsProvided:
                self.xyLabels.append(strategy.label)

            if interval_type != 'n':
                effect_interval = strategy.dEffect.get_interval(
                    interval_type=interval_type,
                    alpha=ALPHA,
                    multiplier=effect_multiplier)
                cost_interval = strategy.dCost.get_interval(
                    interval_type=interval_type,
                    alpha=ALPHA,
                    multiplier=cost_multiplier)
                # print(strategy.name, cost_interval, effect_interval)
                if switch_cost_effect_on_figure:
                    self.yIntervals.append(effect_interval)
                    self.xIntervals.append(cost_interval)
                else:
                    self.xIntervals.append(effect_interval)
                    self.yIntervals.append(cost_interval)
Exemple #6
0
s_center = np.array([[10000, 0.2], [20000, 0.7], [50000, 1.2]])

s0 = ce.Strategy("s0",
                 s_center[0, 0] + np.random.normal(0, 1000, N),
                 s_center[0, 1] + np.random.normal(0, 0.01, N),
                 color='red')
s1 = ce.Strategy("s1",
                 s_center[1, 0] + np.random.normal(0, 1000, N),
                 s_center[1, 1] + np.random.normal(0, 0.01, N),
                 color='blue')
s2 = ce.Strategy("s2",
                 s_center[2, 0] + np.random.normal(0, 1000, N),
                 s_center[2, 1] + np.random.normal(0, 0.05, N),
                 color='green')

cea = ce.CEA([s0, s1, s2], if_paired=True)
cea.plot_CE_plane()

nmb_paired = ce.CBA([s0, s1, s2], wtp_range=[0, 100000], if_paired=True)
nmb_indp = ce.CBA([s0, s1, s2], wtp_range=[0, 100000],
                  if_paired=False)  # list of frontier strategies as input

# Try NMB_Lines figure - paired CI
nmb_paired.plot_incremental_nmbs(title="deltaNMB lines for paired CI",
                                 x_label="wtp values",
                                 y_label="NMB values",
                                 y_axis_multiplier=0.1,
                                 interval_type='c',
                                 show_legend=True,
                                 figure_size=(6, 5))
Exemple #7
0
                 s_center[3, 1] + np.random.normal(0, 200, 10))
s4 = ce.Strategy("s5", s_center[4, 0] + np.random.normal(0, 200, 10),
                 s_center[4, 1] + np.random.normal(0, 200, 10))
s5 = ce.Strategy("s6", s_center[5, 0] + np.random.normal(0, 200, 10),
                 s_center[5, 1] + np.random.normal(0, 200, 10))
s6 = ce.Strategy("s7", s_center[6, 0] + np.random.normal(0, 200, 10),
                 s_center[6, 1] + np.random.normal(0, 200, 10))
s7 = ce.Strategy("s8", s_center[7, 0] + np.random.normal(0, 200, 10),
                 s_center[7, 1] + np.random.normal(0, 200, 10))
s8 = ce.Strategy("s9", s_center[8, 0] + np.random.normal(0, 200, 10),
                 s_center[8, 1] + np.random.normal(0, 200, 10))
s9 = ce.Strategy("s10", s_center[9, 0] + np.random.normal(0, 200, 10),
                 s_center[9, 1] + np.random.normal(0, 200, 10))

# create a CEA object -- unpaired
myCEA = ce.CEA([s0, s1, s2, s3, s4, s5, s6, s7, s8, s9], if_paired=False)

# plot with label and sample cloud
myCEA.plot_CE_plane('CE plane with unpaired observations and showing labels',
                    x_label='E[Effect]',
                    y_label='E[Cost]',
                    show_legend=True,
                    add_clouds=True,
                    fig_size=(6, 6))

# table
print('')
myCEA.build_CE_table(interval_type='c',
                     cost_digits=0,
                     effect_digits=0,
                     icer_digits=1,