Exemple #1
0
 def getWorldInertia(self):
     """ @return inertia with respect to world reference frame
     """
     R = Quaternion.to_matrix(self.inertia_rotation)
     # I in world axis
     I = numpy.dot(R.transpose(), numpy.dot(numpy.diag(self.diagonal_inertia), R))
     # I at world origin, using // axis theorem
     # see http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-03-07.More_on_Inertia_Tensors.html
     # or https://en.wikipedia.org/wiki/Moment_of_inertia
     a=numpy.array(self.com).reshape(3,1)
     return I + self.mass*(pow(numpy.linalg.norm(self.com),2)*numpy.eye(3) - a*a.transpose())
Exemple #2
0
 def getWorldInertia(self):
     """ @return inertia with respect to world reference frame
     """
     R = Quaternion.to_matrix(self.inertia_rotation)
     # I in world axis
     I = numpy.dot(R.transpose(), numpy.dot(numpy.diag(self.diagonal_inertia), R))
     # I at world origin, using // axis theorem
     # see http://www.colorado.edu/physics/phys3210/phys3210_sp14/lecnotes.2014-03-07.More_on_Inertia_Tensors.html
     # or https://en.wikipedia.org/wiki/Moment_of_inertia
     a=numpy.array(self.com).reshape(3,1)
     return I + self.mass*(pow(numpy.linalg.norm(self.com),2)*numpy.eye(3) - a*a.transpose())
Exemple #3
0
def run():

    ok = True

    info = SofaPython.mass.RigidMassInfo()

# testing axis-aligned known geometric shapes
    for m in xrange(len(meshes)):
        mesh = meshes[m]
        mesh_path = path + meshes[m]

        for s in xrange(len(scales)):
            scale = scales[s]

            if mesh=="cylinder.obj" and scale[0]!=scale[1]:
                continue
        
            for d in xrange(len(densities)):
                density=densities[d]

                info.setFromMesh( mesh_path, density, scale )

                error = " ("+meshes[m]+", s="+Tools.cat(scale)+" d="+str(density)+")"

                ok &= EXPECT_TRUE( almostEqualReal(info.mass, masses[m][s][d]), "mass"+error+" "+str(info.mass)+"!="+str(masses[m][s][d]) )
                ok &= EXPECT_TRUE( almostEqualLists(info.com,[x*0.5 for x in scale]), "com"+error+" "+Tools.cat(info.com)+"!="+Tools.cat([x*0.5 for x in scale]) )
                ok &= EXPECT_TRUE( almostEqualLists(info.diagonal_inertia,inertia[m][s][d]), "inertia"+error+" "+str(info.diagonal_inertia)+"!="+str(inertia[m][s][d]) )

# testing diagonal inertia extraction from a rotated cuboid
    mesh = "cube.obj"
    mesh_path = path + mesh
    scale = scales[3]
    density = 1
    theory = sorted(inertia[0][3][0])
    for r in rotations:
        info.setFromMesh( mesh_path, density, scale, r )
        local = sorted(info.diagonal_inertia)
        ok &= EXPECT_TRUE( almostEqualLists(local,theory), "inertia "+str(local)+"!="+str(theory)+" (rotation="+str(r)+")" )

# testing extracted inertia rotation
    mesh = "rotated_cuboid_12_35_-27.obj"
    mesh_path = path + mesh
    density = 1
    info.setFromMesh( mesh_path, density )

    # theoretical results
    scale = [2,3,1]
    mass = density * scale[0]*scale[1]*scale[2]
    inertiat = numpy.empty(3)
    inertiat[0] = 1.0/12.0 * mass * (scale[1]*scale[1]+scale[2]*scale[2]) # x
    inertiat[1] = 1.0/12.0 * mass * (scale[0]*scale[0]+scale[2]*scale[2]) # y
    inertiat[2] = 1.0/12.0 * mass * (scale[0]*scale[0]+scale[1]*scale[1]) # z

    # used quaternion in mesh

    q = Quaternion.normalized( Quaternion.from_euler( [12*math.pi/180.0, 35*math.pi/180.0, -27*math.pi/180.0] ) )

    # corresponding rotation matrices (ie frame defined by columns)
    mt = Quaternion.to_matrix( q )
    m  = Quaternion.to_matrix( info.inertia_rotation )

    # matching inertia
    idxt = numpy.argsort(inertiat)
    idx  = numpy.argsort(info.diagonal_inertia)

    # checking if each axis/column are parallel (same or opposite for unitary vectors)
    for i in xrange(3):
        ok &= EXPECT_TRUE( almostEqualLists(mt[:,idxt[i]].tolist(),m[:,idx[i]].tolist(),1e-5) or almostEqualLists(mt[:,idxt[i]].tolist(),(-m[:,idx[i]]).tolist(),1e-5), "wrong inertia rotation" )


#    print mt[:,idxt]
#    print m [:,idx ]


    return ok
def run():

    ok = True

    info = SofaPython.mass.RigidMassInfo()

    # testing axis-aligned known geometric shapes
    for m in xrange(len(meshes)):
        mesh = meshes[m]
        mesh_path = path + meshes[m]

        for s in xrange(len(scales)):
            scale = scales[s]

            if mesh == "cylinder.obj" and scale[0] != scale[1]:
                continue

            for d in xrange(len(densities)):
                density = densities[d]

                info.setFromMesh(mesh_path, density, scale)

                error = " (" + meshes[m] + ", s=" + Tools.cat(
                    scale) + " d=" + str(density) + ")"

                ok &= EXPECT_TRUE(
                    almostEqualReal(info.mass, masses[m][s][d]), "mass" +
                    error + " " + str(info.mass) + "!=" + str(masses[m][s][d]))
                ok &= EXPECT_TRUE(
                    almostEqualLists(info.com, [x * 0.5 for x in scale]),
                    "com" + error + " " + Tools.cat(info.com) + "!=" +
                    Tools.cat([x * 0.5 for x in scale]))
                ok &= EXPECT_TRUE(
                    almostEqualLists(info.diagonal_inertia, inertia[m][s][d]),
                    "inertia" + error + " " + str(info.diagonal_inertia) +
                    "!=" + str(inertia[m][s][d]))

# testing diagonal inertia extraction from a rotated cuboid
    mesh = "cube.obj"
    mesh_path = path + mesh
    scale = scales[3]
    density = 1
    theory = sorted(inertia[0][3][0])
    for r in rotations:
        info.setFromMesh(mesh_path, density, scale, r)
        local = sorted(info.diagonal_inertia)
        ok &= EXPECT_TRUE(
            almostEqualLists(local, theory), "inertia " + str(local) + "!=" +
            str(theory) + " (rotation=" + str(r) + ")")

# testing extracted inertia rotation
    mesh = "rotated_cuboid_12_35_-27.obj"
    mesh_path = path + mesh
    density = 1
    info.setFromMesh(mesh_path, density)

    # theoretical results
    scale = [2, 3, 1]
    mass = density * scale[0] * scale[1] * scale[2]
    inertiat = numpy.empty(3)
    inertiat[0] = 1.0 / 12.0 * mass * (
        scale[1] * scale[1] + scale[2] * scale[2])  # x
    inertiat[1] = 1.0 / 12.0 * mass * (
        scale[0] * scale[0] + scale[2] * scale[2])  # y
    inertiat[2] = 1.0 / 12.0 * mass * (
        scale[0] * scale[0] + scale[1] * scale[1])  # z

    # used quaternion in mesh

    q = Quaternion.normalized(
        Quaternion.from_euler([
            12 * math.pi / 180.0, 35 * math.pi / 180.0, -27 * math.pi / 180.0
        ]))

    # corresponding rotation matrices (ie frame defined by columns)
    mt = Quaternion.to_matrix(q)
    m = Quaternion.to_matrix(info.inertia_rotation)

    # matching inertia
    idxt = numpy.argsort(inertiat)
    idx = numpy.argsort(info.diagonal_inertia)

    # checking if each axis/column are parallel (same or opposite for unitary vectors)
    for i in xrange(3):
        ok &= EXPECT_TRUE(
            almostEqualLists(mt[:, idxt[i]].tolist(), m[:, idx[i]].tolist(),
                             1e-5)
            or almostEqualLists(mt[:, idxt[i]].tolist(),
                                (-m[:, idx[i]]).tolist(), 1e-5),
            "wrong inertia rotation")

#    print mt[:,idxt]
#    print m [:,idx ]

    return ok