def pvalue(lst): lst = [] x = len(lst) score = zscore(lst) for i in y: if i == score: lst.append(y) return y
def P_value(data): data = [] n = len(data) score = zscore() for index in n: if n == score: data.append(index) return index
def zscore(self, data, x): self.result = zscore(data, x) return self.result
def confidence_interval_SUB(confidence_interval_SUB_list): return subtraction( population_mean(confidence_interval_SUB_list), (multiplication(zscore(confidence_interval_SUB_list)), division(population_standard_deviance(confidence_interval_SUB_list), square_root(num_values))))
def zscore(self): self.result = zscore(self.zscore_list) return self.result
def z_score(self, a): self.result = zscore(a) return self.result
def zscore(self, a): self.result = zscore(a)
def zscore(self, a, b, c): self.result = zscore(a, b, c) return self.result