def viscoElasticUpdater_bgvel(t, y, wdict): #interior function for incompressible background flow only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] N = pdict['N'] M = pdict['M'] l2 = np.reshape(y[range(2 * N * M)], (N * M, 2)) l3 = np.reshape(l2, (N, M, 2)) P2 = np.reshape(y[(2 * N * M):], (N * M, 2, 2)) P3 = np.reshape(P2, (N, M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P3, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3, pdict['gridspc'], N, M) F = np.reshape(F, (N * M, 2, 2)) #calculate new velocities at all points of interest ub, gradub = wdict['myVelocity'](pdict, l2) lt0 = pdict['gridspc']**2 * CM.matmult(pdict['eps_grid'], pdict['mu'], l2, l2, Pd) # reshape the velocities on the grid lt3 = np.reshape(lt0, (N, M, 2)) lt = ub + lt0 # calculate new stress time derivatives gradlt = SD2D.vectorGrad(lt3, pdict['gridspc'], N, M) gradlt = np.reshape(gradlt, (N * M, 2, 2)) Pt = CM.stressDeriv(pdict['Wi'], gradub, gradlt, F, P2) # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) #grad(Stokeslet) method # Finv = CM.matinv2x2(F) #first grad(u) method # Pt = np.zeros((N*M,2,2)) #first grad(u) method # for j in range(N*M): # Pt[j,:,:] = np.dot(gradub[j,:,:],P2[j,:,:]) + np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) return np.append(lt, Pt.flatten())
def viscoElasticUpdater_bgvel(t,y,wdict): #interior function for incompressible background flow only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] N = pdict['N'] M = pdict['M'] l2 = np.reshape(y[range(2*N*M)],(N*M,2)) l3 = np.reshape(l2,(N,M,2)) P2 = np.reshape(y[(2*N*M):],(N*M,2,2)) P3 = np.reshape(P2,(N,M,2,2)) #calculate tensor derivative Pd = pdict['beta']*SD2D.tensorDiv(P3,pdict['gridspc'],N,M) Pd = np.reshape(Pd,(N*M,2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3,pdict['gridspc'],N,M) F = np.reshape(F,(N*M,2,2)) #calculate new velocities at all points of interest ub, gradub = wdict['myVelocity'](pdict,l2) lt0 = pdict['gridspc']**2*CM.matmult(pdict['eps_grid'],pdict['mu'],l2,l2,Pd) # reshape the velocities on the grid lt3 = np.reshape(lt0,(N,M,2)) lt = ub + lt0 # calculate new stress time derivatives gradlt = SD2D.vectorGrad(lt3,pdict['gridspc'],N,M) gradlt = np.reshape(gradlt,(N*M,2,2)) Pt = CM.stressDeriv(pdict['Wi'],gradub,gradlt,F,P2) # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) #grad(Stokeslet) method # Finv = CM.matinv2x2(F) #first grad(u) method # Pt = np.zeros((N*M,2,2)) #first grad(u) method # for j in range(N*M): # Pt[j,:,:] = np.dot(gradub[j,:,:],P2[j,:,:]) + np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) return np.append(lt,Pt.flatten())
def viscoElasticUpdater_force(t, y, wdict): #interior function for force pts only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y) / 2 - N * M - 2 * N * M fpts = np.reshape(y[:2 * Q], (Q, 2)) l2 = np.reshape(y[range(2 * Q, 2 * Q + 2 * N * M)], (N * M, 2)) l3 = np.reshape(l2, (N, M, 2)) allpts = np.reshape( y[:2 * Q + 2 * N * M], (Q + N * M, 2)) # both force points and Lagrangian points P2 = np.reshape(y[(2 * Q + 2 * N * M):], (N * M, 2, 2)) P3 = np.reshape(P2, (N, M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P3, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate spring forces f = wdict['myForces'](fpts, **pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = pdict['gridspc']**2 * CM.matmult( pdict['eps_grid'], pdict['mu'], allpts, l2, Pd) + CM.matmult( pdict['eps_obj'], pdict['mu'], allpts, fpts, f) # reshape the velocities on the grid lt3 = np.reshape(lt[2 * Q:], (N, M, 2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3, pdict['gridspc'], N, M) F = np.reshape(F, (N * M, 2, 2)) #calculate new stress time derivatives # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) + CM.derivop(pdict['eps_obj'],pdict['mu'],l2,fpts,f,F) #grad(Stokeslet) method gradlt = SD2D.vectorGrad(lt3, pdict['gridspc'], N, M) gradlt = np.reshape(gradlt, (N * M, 2, 2)) gradub = np.zeros(gradlt.shape) # Finv = CM.matinv2x2(F) # first grad(u) method # Pt = np.zeros((N*M,2,2)) # for j in range(N*M): # Pt[j,:,:] = np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) Pt = CM.stressDeriv(pdict['Wi'], gradub, gradlt, F, P2) return np.append(lt, Pt.flatten())
def stokesFlowUpdaterWithMarkers(t, y, wdict): pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y) / 2 - N * M fpts = np.reshape(y[:2 * Q], (Q, 2)) ap = np.reshape(y, (Q + N * M, 2)) #calculate spring forces f = pdict['myForces'](fpts, **pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = CM.matmult(pdict['eps_obj'], pdict['mu'], ap, fpts, f) return lt
def stokesFlowUpdaterWithMarkers(t,y,wdict): pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y)/2 - N*M fpts = np.reshape(y[:2*Q],(Q,2)) ap = np.reshape(y,(Q+N*M,2)) #calculate spring forces f = pdict['myForces'](fpts,**pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = CM.matmult(pdict['eps_obj'],pdict['mu'],ap,fpts,f) return lt
def viscoElasticUpdater_force(t,y,wdict): #interior function for force pts only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y)/2 - N*M - 2*N*M fpts = np.reshape(y[:2*Q],(Q,2)) l2 = np.reshape(y[range(2*Q,2*Q+2*N*M)],(N*M,2)) l3 = np.reshape(l2,(N,M,2)) allpts = np.reshape(y[:2*Q+2*N*M],(Q+N*M,2)) # both force points and Lagrangian points P2 = np.reshape(y[(2*Q+2*N*M):],(N*M,2,2)) P3 = np.reshape(P2,(N,M,2,2)) #calculate tensor derivative Pd = pdict['beta']*SD2D.tensorDiv(P3,pdict['gridspc'],N,M) Pd = np.reshape(Pd,(N*M,2)) #calculate spring forces f = wdict['myForces'](fpts,**pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = pdict['gridspc']**2*CM.matmult(pdict['eps_grid'],pdict['mu'],allpts,l2,Pd) + CM.matmult(pdict['eps_obj'],pdict['mu'],allpts,fpts,f) # reshape the velocities on the grid lt3 = np.reshape(lt[2*Q:],(N,M,2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3,pdict['gridspc'],N,M) F = np.reshape(F,(N*M,2,2)) #calculate new stress time derivatives # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) + CM.derivop(pdict['eps_obj'],pdict['mu'],l2,fpts,f,F) #grad(Stokeslet) method gradlt = SD2D.vectorGrad(lt3,pdict['gridspc'],N,M) gradlt = np.reshape(gradlt,(N*M,2,2)) gradub = np.zeros(gradlt.shape) # Finv = CM.matinv2x2(F) # first grad(u) method # Pt = np.zeros((N*M,2,2)) # for j in range(N*M): # Pt[j,:,:] = np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) Pt = CM.stressDeriv(pdict['Wi'],gradub,gradlt,F,P2) return np.append(lt,Pt.flatten())
def stokesFlowUpdater(t, y, wdict): ''' t = current time, y = [fpts.flatten(), l.flatten(), P.flatten()], pdict contains: K is spring constant, xr is resting position, blob is regularized Stokeslet object, myForces is a function handle, forcedict is a dictionary containing optional parameters for calculating forces. ''' pdict = wdict['pdict'] pdict['forcedict']['t'] = t Q = len(y) / 2 fpts = np.reshape(y, (Q, 2)) f = wdict['myForces'](fpts, **pdict['forcedict']) yt = CM.matmult(pdict['eps_obj'], pdict['mu'], fpts, fpts, f) return yt
def stokesFlowUpdater(t,y,wdict): ''' t = current time, y = [fpts.flatten(), l.flatten(), P.flatten()], pdict contains: K is spring constant, xr is resting position, blob is regularized Stokeslet object, myForces is a function handle, forcedict is a dictionary containing optional parameters for calculating forces. ''' pdict = wdict['pdict'] pdict['forcedict']['t'] = t Q=len(y)/2 fpts = np.reshape(y,(Q,2)) f = wdict['myForces'](fpts,**pdict['forcedict']) yt = CM.matmult(pdict['eps_obj'],pdict['mu'],fpts,fpts,f) return yt