def recurrent_class(data, wdw_length, scale=1, n=50000, n_neurons=[10], n_epochs=30, batch_size=50, verbose=1): """ Trains and validates a recurrent neural network (composed of one recurrent hidden layer) for the monitoring. The network is trained to classify the shape of the deviations into three different classes: - sudden jumps - more progressive drifts - oscillating shifts. Parameters ---------- data : 2D-array in-control (IC) dataset (rows: time, columns: IC series). wdw_length : int > 0 The length of the input data. scale : float > 0, optional The scale parameter of the normal distribution that is used to simulate the size of the deviations. The default is 1. n : int > 0, optional Number of training and validating instances. This value is typically large. The default is 50000. n_neurons : list of int, optional Number of neurons in the hidden layer. The default is [10]. n_epochs : int > 0, optional The number of epochs. The default is 30. batch-size : int > 0, optional The batch size. The default is 50. verbose : int, optional Verbosity mode. 0=silent, 1=progress bar, 2=one line per epoch. The default is 1. Returns ------- model : (keras) model The trained neural network. scores : list The performances of the model. It contains the mean squared error (loss function) and the accuracy (metrics) of the network on the validation set. matrix : 2D-array (float) The confusion matrix of the classifier. """ wdw_length = int(wdw_length) assert wdw_length > 0, "wdw_length must be superior to zero" assert scale > 0, "scale must be superior to zero" n = int(n) assert n > 0, "n must be superior to zero" n_epochs = int(n_epochs) assert n_epochs > 0, "n_epochs must be superior to zero" batch_size = int(batch_size) assert batch_size > 0, "batch_size must be superior to zero" assert len(n_neurons) == 1, "n_neurons must be composed of 2 elements" #assert all(isinstance(item, int) for item in n_neurons), 'The number of neurons should be integer>0' n_test = int(n / 5) #n testing instances n_train = n - n_test #n training instances blocks = bb.MBB(data, wdw_length) #blocks_training = bb.MBB(dataIC[:,:75],wdw_length) #blocks_testing = bb.MBB(dataIC[:,75:], wdw_length) ### training set X_train = np.zeros((n_train, wdw_length)) Y_train = np.zeros((n_train)) S_train = np.zeros((n_train)) #shapes rnd_shifts = np.random.normal(0, scale, n_train) for b in range(0, n_train - 2, 3): shift = rnd_shifts[b] series = resample(blocks, replace=True, n_samples=1).flatten() for shape in range(3): boot = np.copy(series) if shape == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift S_train[b] = 0 elif shape == 1: power = np.random.uniform(1, 2) boot = shift / (100) * (np.arange(wdw_length)**power) + boot S_train[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift * boot #plt.plot(boot); plt.show() S_train[b] = 2 X_train[b] = boot Y_train[b] = shift b += 1 ### testing set X_test = np.zeros((n_test, wdw_length)) Y_test = np.zeros((n_test)) S_test = np.zeros((n_test)) rnd_shifts = np.random.normal(0, scale, n_test) for b in range(0, n_test - 2, 3): shift = rnd_shifts[b] series = resample(blocks, replace=True, n_samples=1).flatten() for shape in range(3): boot = np.copy(series) if shape == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift S_test[b] = 0 elif shape == 1: power = np.random.uniform(1, 2) boot = shift / (100) * (np.arange(wdw_length)**power) + boot S_test[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift * boot S_test[b] = 2 X_test[b] = boot Y_test[b] = shift b += 1 ### Neural network Architecture (classification) model = tf.keras.Sequential() #linear stack of layers model.add(layers.SimpleRNN(n_neurons[0], input_dim=wdw_length)) model.add(layers.Dense(3, activation='softmax')) # three output classes if verbose > 0: model.summary() #compile model model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) S_train = to_categorical(S_train) #hot encoding X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1])) model.fit(X_train, S_train, epochs=n_epochs, batch_size=batch_size, verbose=verbose) # make class predictions with the model S_test = to_categorical(S_test) X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1])) #predictions = model.predict_classes(X_test) predictions = np.argmax(model.predict(X_test), axis=-1) predictions = to_categorical(predictions) scores = model.evaluate(X_test, S_test, verbose=verbose) #confusion matrix matrix = metrics.confusion_matrix(predictions.argmax(axis=1), S_test.argmax(axis=1), normalize='true') return model, scores, matrix
def feed_forward_reg(data, wdw_length, scale=1, n=50000, n_hidden=2, n_neurons=[40, 20], activation='sigmoid', n_epochs=30, batch_size=50, verbose=1): """ Trains and validates a feed-forward neural network for the monitoring. The network is trained to predict in a continuous range the size of the deviations (i.e. they are designed for regression purposes). Parameters ---------- data : 2D-array in-control (IC) dataset (rows: time, columns: IC series). wdw_length : int > 0 The length of the input data. scale : float > 0, optional The scale parameter of the normal distribution that is used to simulate the size of the deviations. The default is 1. n : int > 0, optional Number of training and validating instances. This value is typically large. The default is 50000. n_hidden : int > 0, optional Number of hidden layers. The defaults is 2. n_neurons : list of int, optional Number of neurons in each hidden layer. The default is [40, 20]. activation : string, optional The activation function. The default is 'sigmoid'. Other values are 'relu', 'softmax', 'softplus', 'tanh' etc. (see keras documentation) n_epochs : int > 0, optional The number of epochs. The default is 30. batch-size : int > 0, optional The batch size. The default is 50. verbose : int, optional Verbosity mode. 0=silent, 1=progress bar, 2=one line per epoch. The default is 1. Returns ------- model : (keras) model The trained neural network. scores : list The performances of the model. It contains the mean squared error (loss function), the mean absolute error and the mean absolute percentage error (metrics) of the network on the validation set. """ wdw_length = int(wdw_length) assert wdw_length > 0, "wdw_length must be superior to zero" assert scale > 0, "scale must be superior to zero" n = int(n) assert n > 0, "n must be superior to zero" n_hidden = int(n_hidden) assert n_hidden > 0, "n_hidden must be superior to zero" assert n_hidden == len( n_neurons), 'The neurons do not match the number of hidden layers' #assert all(isinstance(item, int) for item in n_neurons), 'The number of neurons should be integer>0' n_epochs = int(n_epochs) assert n_epochs > 0, "n_epochs must be superior to zero" batch_size = int(batch_size) assert batch_size > 0, "batch_size must be superior to zero" n_test = int(n / 5) #n testing instances n_train = n - n_test #n training instances blocks = bb.MBB(data, wdw_length) ### training set X_train = np.zeros((n_train, wdw_length)) Y_train = np.zeros((n_train)) S_train = np.zeros((n_train)) #shapes rnd_shifts = np.random.normal(0, scale, n_train) #shift sizes for b in range(0, n_train - 2, 3): shift = rnd_shifts[b] series = resample(blocks, replace=True, n_samples=1).flatten() for shape in range(3): boot = np.copy(series) if shape == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift S_train[b] = 0 elif shape == 1: power = np.random.uniform(1, 2) boot = shift / (500) * (np.arange(wdw_length)**power) + boot S_train[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift + boot S_train[b] = 2 X_train[b] = boot Y_train[b] = shift b += 1 ### testing set X_test = np.zeros((n_test, wdw_length)) Y_test = np.zeros((n_test)) S_test = np.zeros((n_test)) rnd_shifts = np.random.normal(0, scale, n_test) for b in range(0, n_test - 2, 3): shift = rnd_shifts[b] series = resample(blocks, replace=True, n_samples=1).flatten() for shape in range(3): boot = np.copy(series) if shape == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift S_test[b] = 0 elif shape == 1: power = np.random.uniform(1, 2) boot = shift / (500) * (np.arange(wdw_length)**power) + boot S_test[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift + boot S_test[b] = 2 X_test[b] = boot Y_test[b] = shift b += 1 ### scaling input and output data # if norm: # input_scaler = MinMaxScaler(feature_range=(-1,1)) # input_scaler.fit(X_train) # X_train = input_scaler.transform(X_train) # X_test = input_scaler.transform(X_test) # Y_train = Y_train.reshape(-1,1) # Y_test = Y_test.reshape(-1,1) # output_scaler = MinMaxScaler(feature_range=(-1,1)) # output_scaler.fit(Y_train) # Y_train = output_scaler.transform(Y_train) # Y_test = output_scaler.transform(Y_test) ### Neural network Architecture model = tf.keras.Sequential() #linear stack of layers for i in range(n_hidden): model.add( layers.Dense(n_neurons[i], input_dim=wdw_length, activation=activation, use_bias=True)) model.add(layers.Dense( 1, use_bias=True)) # no activation in the output layer since regression if verbose > 0: model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae']) model.fit(X_train, Y_train, epochs=n_epochs, batch_size=batch_size, verbose=verbose) # make predictions with the model predictions = model.predict(X_test) # if norm: # X_test = input_scaler.inverse_transform(X_test) # Y_test = output_scaler.inverse_transform(Y_test) # predictions = output_scaler.inverse_transform(predictions) # Y_test = Y_test.reshape(-1) predictions = predictions.reshape(-1) ind = np.where(abs(Y_test) > 0.1) mape = (1 / len(Y_test[ind])) * sum( abs((abs(Y_test[ind]) - abs(predictions[ind])) / abs(Y_test[ind]))) * 100 scores = model.evaluate(X_test, Y_test, verbose=verbose) scores.append(mape) return model, scores
def choice_C(data, L_plus, delta_min, wdw_length, scale, start=1, stop=10, step=1, delay=0, L_minus=None, k=None, n=36000, n_series=500, epsilon=0.001, block_length=None, BB_method='MBB', confusion=False, verbose=True): """ Selects an appropriate value for the regularization parameter (C) of the svm procedures. The procedure is implemented as follows. For each value of C, the regressor and classifier are trained and validated. Then, the values of C that maximize/minimize different performance measures are returned. The training (and validating) procedure works as explained below. For each monte-carlo run, a new series of observations is sampled from the IC data using a block boostrap procedure. A shift size is then sampled from a halfnormal distribution (supported by [delta_min, +inf]) with a specified scale parameter. A jump, an oscillating shift and a drift of previous size are then added on top of the sample to create artificial deviations. The classifer is then trained to recognize the form of deviations among the three general classes: 'jump', 'drift' or 'oscillation' whereas the regressor learns to predict the shift sizes in a continuous range. Once the learning is finished, a validation step is also applied on unseen deviations to evaluate the performances of the svr and svc. Three criteria are computed: the mean absolute percentage error (MAPE), the mean squared error (MSE) and the accuracy. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). L_plus : float Value for the positive control limit. delta_min : float > 0 The target minimum shift size. wdw_length : int > 0 The length of the input vector. scale : float > 0 The scale parameter of the halfnormal distribution (similar to the variance of a normal distribution). A typical range of values for scale is [1,4], depending on the size of the actual deviations start : float > 0, optional Starting value for C. Default is 1. stop : float > 0, optional Stopping value for C. Default is 10. step : float > 0, optional Step value for C. The function tests different values of C in the range [start, stop] with step value equal to 'step'. Default is 1. delay : int, optional Flag to start the chart after a delay randomly selected from the interval [0, delay]. Default is 0 (no delay). L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. k : float, optional The allowance parameter. The default is None. When None, k = delta/2 (optimal formula for iid normal data). n : int > 0, optional Number of training and validating instances. This value is typically large. Default is 36000. n_series : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 500. epsilon : float, optional Parameter of the svr, which represents the approximation accuracy. Default is 0.001. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. confusion : bool, optional Flag to show the confusion matrix (measure of the classification accuracy, class by class). Default is False. verbose : bool, optional Flag to print infos about C. Default is True. Returns ------ min_MAPE : float > 0 The value of C that minimizes the MAPE (mean absolute percentage error). min_MSE : float > 0 The value of C that minimizes the MSE (mean squared error). max_accuracy : float > 0 The value of C that maximizes the accuracy. """ assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) if 'blocks' in locals(): n_blocks = int(np.ceil(n_series / blocks.shape[1])) wdw_length = int(np.ceil(wdw_length)) #should be integer delay = int(delay) n = int(n) assert n > 0, "n must be strictly positive" if n % 3 == 2: #n should be multiple of 3 n += 1 if n % 3 == 1: n += 2 if L_minus is None: L_minus = -L_plus if k is None: k = delta_min / 2 sign = 1 n_test = int(n / 5) #n testing instances n_train = n - n_test #n training instances n_C = int(np.ceil((stop - start) / step)) MAPE = np.zeros((n_C)) MSE = np.zeros((n_C)) accuracy = np.zeros((n_C)) count = 0 C_values = np.arange(start, stop, step) for C in np.arange(start, stop, step): ### training input_train = np.zeros((n_train, wdw_length)) size_train = np.zeros((n_train)) form_train = np.zeros((n_train)) rnd = halfnorm(scale=scale).rvs( size=n_train) + delta_min #size of shifts delay_rnd = 0 for b in range(0, n_train - 2, 3): shift = rnd[b] * sign if BB_method == 'MABB': series = bb.resample_MatchedBB(data, block_length, n=n_series) else: series = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n_series] #simulate a random delay if delay > 0: delay_rnd = np.random.randint(delay) for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: boot[wdw_length:] = boot[wdw_length:] + shift form_train[b] = 0 elif rnd_form == 1: power = np.random.uniform(1.5, 2) boot = shift / (n_series) * (np.arange(0, n_series)** power) + boot form_train[b] = 1 else: eta = np.random.uniform(np.pi / (wdw_length), 3 * np.pi / wdw_length) boot = np.sin( eta * np.pi * np.arange(n_series)) * shift * boot form_train[b] = 2 size_train[b] = shift input_plus = boot[wdw_length:wdw_length * 2] C_plus = np.zeros((n_series, 1)) for i in range( wdw_length + delay_rnd, n_series): #start the monitoring after random delay C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) if C_plus[i] > L_plus: input_plus = boot[i + 1 - wdw_length:i + 1] break input_minus = boot[wdw_length:wdw_length * 2] C_minus = np.zeros((n_series, 1)) for j in range(wdw_length + delay_rnd, n_series): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) if C_minus[j] < L_minus: input_minus = boot[j + 1 - wdw_length:j + 1] break if i > j: #save first alert recorded input_train[b, :] = input_minus else: input_train[b, :] = input_plus b += 1 sign = -sign ### train the models regressor = SVR(C=C, epsilon=epsilon) regressor.fit(input_train, size_train) clf = svm.SVC(C=C) clf.fit(input_train, form_train) ###testing input_test = np.zeros((n_test, wdw_length)) label_test = np.zeros((n_test)) form_test = np.zeros((n_test)) rnd = halfnorm(scale=scale).rvs(size=n_test) + delta_min delay_rnd = 0 for b in range(0, n_test - 2, 3): shift = rnd[b] * sign if BB_method == 'MABB': series = bb.resample_MatchedBB(data, block_length, n=n_series) else: series = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n_series] #simulate a random delay if delay > 0: delay_rnd = np.random.randint(delay) for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: boot[wdw_length:] = boot[wdw_length:] + shift form_test[b] = 0 elif rnd_form == 1: power = np.random.uniform(1.5, 2) boot = shift / (n_series) * (np.arange(0, n_series)** power) + boot form_test[b] = 1 else: eta = np.random.uniform(np.pi / (wdw_length), 3 * np.pi / wdw_length) boot = np.sin( eta * np.pi * np.arange(n_series)) * shift * boot form_test[b] = 2 label_test[b] = shift input_plus = boot[wdw_length:wdw_length * 2] C_plus = np.zeros((n_series, 1)) for i in range(wdw_length + delay_rnd, n_series): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) if C_plus[i] > L_plus: input_plus = boot[i + 1 - wdw_length:i + 1] break input_minus = boot[wdw_length:wdw_length * 2] C_minus = np.zeros((n_series, 1)) for j in range(wdw_length + delay_rnd, n_series): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) if C_minus[j] < L_minus: input_minus = boot[j + 1 - wdw_length:j + 1] break if i > j: #first alert recorded input_test[b, :] = input_minus else: input_test[b, :] = input_plus b += 1 sign = -sign ### compute accuracy and other precision measures label_pred = regressor.predict(input_test) label_pred_clf = clf.predict(input_test) #regressor MAPE[count] = (1 / len(label_pred)) * sum( np.abs((np.abs(label_test) - np.abs(label_pred)) / np.abs(label_test))) * 100 MSE[count] = (1 / len(label_pred)) * sum((label_test - label_pred)**2) #classifier accuracy[count] = sum( label_pred_clf == form_test) * 100 / len(label_pred_clf) ### compute the confusion matrix if confusion: class_names = ['jump', 'drift', 'oscill.'] titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(clf, input_test, form_test, display_labels=class_names, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() count += 1 min_MAPE = C_values[np.argmin(MAPE)] min_MSE = C_values[np.argmin(MSE)] max_accuracy = C_values[np.argmax(accuracy)] if verbose: print('C value that minimizes the MAPE:', min_MAPE) print('C value that minimizes the MSE:', min_MSE) print('C value that maximizes the accuracy:', max_accuracy) return min_MAPE, min_MSE, max_accuracy
def simple_svm(data, wdw_length, scale, n=50000, C=1.0, epsilon=0.001, kernel='rbf', degree=3, precision=True, confusion=True): """ Trains the support vector machine classifier (svc) and regressor (svr). For each monte-carlo run, a new block of observations is sampled from the IC data using a block boostrap procedure. A shift size is then sampled from a normal distribution with a specified scale parameter. A jump, an oscillating shift (with random frequency in the interval [pi/(2*wdw_length), 2*pi/wdw_length]) and a drift (with random power-law functions in the range [1,2]) of previous size are then added on top of the sample to create artificial deviations. The classifer is then trained to recognize the form of deviations among the three general classes: 'jump', 'drift' or 'oscillation' whereas the regressor learns to predict the shift sizes in a continuous range. Once the learning is finished, a validation step is also applied on unseen deviations to evaluate the performances of the svr and svc. Three criteria are computed: the mean absolute percentage error (MAPE), the mean squared error (MSE) and the accuracy. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). wdw_length : int > 0 The length of the input vector. scale : float > 0 The standard deviation of the normal distribution. A typical range of values for scale is [1,4], depending on the size of the actual deviations n : int > 0, optional Number of training and validating instances. This value is typically large. Default is 50000. C : float > 0, optional Regularization parameter of the svr and svc (the strength of the regularization is inversely proportional to C). Default is 1. Typical range is [1, 10]. epsilon : float, optional Parameter of the svr, which represents the approximation accuracy. Default is 0.001. kernel : str, optional The kernel function to be used in the svm procedures. Values should be selected among: 'rbf', 'linear', 'sigmoid' and 'poly'. Default is 'rbf'. degree : int > 0, optional The degree of the polynomial kernel. Only used when kernel='poly'. Default is 3. precision : bool, optional Flag to print accuracy measures. Default is True. confusion : bool, optional Flag to show the confusion matrix (measure of the classification accuracy, class by class). Default is True. Returns ------ clf : support vector classification model The trained classifier. regressor : support vector regression model The trained regressor. """ wdw_length = int(np.ceil(wdw_length)) #should be integer blocks = bb.MBB(data, wdw_length) n = int(n) assert n > 0, "n must be strictly positive" if n % 3 == 2: #n should be multiple of 3 n += 1 if n % 3 == 1: n += 2 assert degree > 0, "degree must be strictly positive" degree = int(degree) n_test = int(n / 5) #n testing instances n_train = n - n_test #n training instances ### training input_train = np.zeros((n_train, wdw_length)) size_train = np.zeros((n_train)) form_train = np.zeros((n_train)) rnd = np.random.normal(0, scale, n_train) #size of shifts for b in range(0, n_train - 2, 3): shift = rnd[b] series = resample(blocks, replace=True, n_samples=1).flatten() for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift form_train[b] = 0 elif rnd_form == 1: power = np.random.uniform(1, 2) boot = shift / (500) * (np.arange(wdw_length)**power) + boot form_train[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift + boot form_train[b] = 2 size_train[b] = shift input_train[b, :] = boot b += 1 ### train the models regressor = SVR(C=C, epsilon=epsilon, kernel=kernel, degree=degree) regressor.fit(input_train, size_train) clf = svm.SVC(C=C, kernel=kernel, degree=degree) clf.fit(input_train, form_train) ### testing input_test = np.zeros((n_test, wdw_length)) label_test = np.zeros((n_test)) form_test = np.zeros((n_test)) rnd = np.random.normal(0, scale, n_test) #size of shifts for b in range(0, n_test - 2, 3): shift = rnd[b] series = resample(blocks, replace=True, n_samples=1).flatten() for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: delay = np.random.randint(0, wdw_length) boot[delay:] = boot[delay:] + shift form_test[b] = 0 elif rnd_form == 1: power = np.random.uniform(1, 2) boot = shift / (500) * (np.arange(wdw_length)**power) + boot form_test[b] = 1 else: eta = np.random.uniform(np.pi / (2 * wdw_length), 2 * np.pi / wdw_length) phi = np.random.randint(0, int(wdw_length / 4)) boot = np.sin(eta * np.pi * np.arange(wdw_length) + phi) * shift + boot form_test[b] = 2 label_test[b] = shift input_test[b, :] = boot b += 1 ### compute accuracy and other precision measures label_pred = regressor.predict(input_test) label_pred_clf = clf.predict(input_test) if precision: #regressor MAPE = (1 / len(label_pred)) * sum( np.abs((label_test - label_pred) / label_test)) * 100 #NRMSE = np.sqrt(sum((label_test - label_pred)**2) / sum(label_test**2)) MSE = (1 / len(label_pred)) * sum((label_test - label_pred)**2) print('MAPE =', MAPE) print('MSE =', MSE) label_pred = abs(label_pred) label_test = abs(label_test) MAPE = (1 / len(label_pred)) * sum( np.abs((label_test - label_pred) / label_test)) * 100 #NRMSE = np.sqrt(sum((label_test - label_pred)**2) / sum(label_test**2)) MSE = (1 / len(label_pred)) * sum((label_test - label_pred)**2) print('MAPE without signs =', MAPE) print('MSE without signs =', MSE) #classifier accuracy = sum(label_pred_clf == form_test) * 100 / len(label_pred_clf) #MAE = (1/len(label_pred_clf)) * sum(np.abs(form_test - label_pred_clf)) #MSE = (1/len(label_pred_clf)) * sum((form_test - label_pred_clf)**2) print('Accuracy =', accuracy) ### compute the confusion matrix if confusion: class_names = ['jump', 'drift', 'oscill.'] titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(clf, input_test, form_test, display_labels=class_names, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) print(disp.confusion_matrix[2, 1] / n_test) plt.show() return (regressor, clf)
def training_svm(data, L_plus, delta_min, wdw_length, scale, delay=0, L_minus=None, k=None, n=63000, n_series=500, C=1.0, epsilon=0.001, kernel='rbf', degree=3, block_length=None, BB_method='MBB', precision=True, confusion=True): """ Trains the support vector machine classifier (svc) and regressor (svr). The training (and validating) procedure works as follows. For each monte-carlo run, a new series of observations is sampled from the IC data using a block boostrap procedure. A shift size is then sampled from a halfnormal distribution (supported by [delta_min, +inf]) with a specified scale parameter. A jump, an oscillating shift (with random frequency in the interval [pi/(wdw_length), 3*pi/wdw_length]) and a drift (with random power-law functions in the range [1.5,2]) of previous size are then added on top of the sample to create artificial deviations. The classifer is then trained to recognize the form of deviations among the three general classes: 'jump', 'drift' or 'oscillation' whereas the regressor learns to predict the shift sizes in a continuous range. Once the learning is finished, a validation step is also applied on unseen deviations to evaluate the performances of the svr and svc. Three criteria are computed: the mean absolute percentage error (MAPE), the mean squared error (MSE) and the accuracy. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). L_plus : float Value for the positive control limit. delta_min : float > 0 The target minimum shift size. wdw_length : int > 0 The length of the input vector. scale : float > 0 The scale parameter of the halfnormal distribution (similar to the variance of a normal distribution). A typical range of values for scale is [1,4], depending on the size of the actual deviations delay : int, optional Flag to start the chart after a delay, randomly selected from the interval [0, delay]. Default is 0 (no delay). L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. k : float, optional The allowance parameter. The default is None. When None, k = delta/2 (optimal formula for iid normal data). n : int > 0, optional Number of training and validating instances. This value is typically large. Default is 63000. n_series : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 500. C : float > 0, optional Regularization parameter of the svr and svc (the strength of the regularization is inversely proportional to C). Default is 1. Typical range is [1, 10]. epsilon : float, optional Parameter of the svr, which represents the approximation accuracy. Default is 0.001. kernel : str, optional The kernel function to be used in the svm procedures. Values should be selected among: 'rbf', 'linear', 'sigmoid' and 'poly'. Default is 'rbf'. degree : int > 0, optional The degree of the polynomial kernel. Only used when kernel='poly'. Default is 3. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. precision : bool, optional Flag to print accuracy measures. Default is True. confusion : bool, optional Flag to show the confusion matrix (measure of the classification accuracy, class by class). Default is True. Returns ------ clf : support vector classification model The trained classifier. regressor : support vector regression model The trained regressor. """ assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) if 'blocks' in locals(): n_blocks = int(np.ceil(n_series / blocks.shape[1])) wdw_length = int(np.ceil(wdw_length)) #should be integer delay = int(delay) n = int(n) assert n > 0, "n must be strictly positive" if n % 3 == 2: #n should be multiple of 3 n += 1 if n % 3 == 1: n += 2 if L_minus is None: L_minus = -L_plus if k is None: k = delta_min / 2 assert degree > 0, "degree must be strictly positive" degree = int(degree) sign = 1 n_test = int(n / 5) #n testing instances n_train = n - n_test #n training instances ### training input_train = np.zeros((n_train, wdw_length)) size_train = np.zeros((n_train)) form_train = np.zeros((n_train)) rnd = halfnorm(scale=scale).rvs(size=n_train) + delta_min #size of shifts delay_rnd = 0 for b in range(0, n_train - 2, 3): shift = rnd[b] * sign if BB_method == 'MABB': series = bb.resample_MatchedBB(data, block_length, n=n_series) else: series = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n_series] #simulate a random delay if delay > 0: delay_rnd = np.random.randint(delay) for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: #jump boot[wdw_length:] = boot[wdw_length:] + shift form_train[b] = 0 elif rnd_form == 1: #drift power = np.random.uniform(1.5, 2) boot = shift / (n_series) * (np.arange(n_series)**power) + boot form_train[b] = 1 elif rnd_form == 2: #oscillating shift #eta = np.random.uniform(np.pi/(2*wdw_length), 2*np.pi/wdw_length) eta = np.random.uniform(np.pi / (wdw_length), 3 * np.pi / wdw_length) boot = np.sin(eta * np.pi * np.arange(n_series)) * shift * boot form_train[b] = 2 size_train[b] = shift input_plus = boot[wdw_length:wdw_length * 2] #default is not alert C_plus = np.zeros((n_series, 1)) for i in range(wdw_length + delay_rnd, n_series): #start the monitoring after random delay C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) if C_plus[i] > L_plus: input_plus = boot[i + 1 - wdw_length:i + 1] break input_minus = boot[wdw_length:wdw_length * 2] #default is not alert C_minus = np.zeros((n_series, 1)) for j in range(wdw_length + delay_rnd, n_series): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) if C_minus[j] < L_minus: input_minus = boot[j + 1 - wdw_length:j + 1] break if i > j: #save first alert recorded input_train[b, :] = input_minus else: input_train[b, :] = input_plus b += 1 sign = -sign ### train the models regressor = SVR(C=C, epsilon=epsilon, kernel=kernel, degree=degree) regressor.fit(input_train, size_train) clf = svm.SVC(C=C, kernel=kernel, degree=degree) clf.fit(input_train, form_train) ###testing input_test = np.zeros((n_test, wdw_length)) label_test = np.zeros((n_test)) form_test = np.zeros((n_test)) rnd = halfnorm(scale=scale).rvs(size=n_test) + delta_min delay_rnd = 0 for b in range(0, n_test - 2, 3): shift = rnd[b] * sign if BB_method == 'MABB': series = bb.resample_MatchedBB(data, block_length, n=n_series) else: series = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n_series] #simulate a random delay if delay > 0: delay_rnd = np.random.randint(delay) for rnd_form in range(3): boot = np.copy(series) if rnd_form == 0: boot[wdw_length:] = boot[wdw_length:] + shift form_test[b] = 0 elif rnd_form == 1: power = np.random.uniform(1.5, 2) boot = shift / (n_series) * (np.arange(n_series)**power) + boot form_test[b] = 1 else: #eta = np.random.uniform(np.pi/(2*wdw_length), 2*np.pi/wdw_length) eta = np.random.uniform(np.pi / (wdw_length), 3 * np.pi / wdw_length) boot = np.sin(eta * np.pi * np.arange(n_series)) * shift * boot form_test[b] = 2 label_test[b] = shift input_plus = boot[wdw_length:wdw_length * 2] #default is not alert C_plus = np.zeros((n_series, 1)) for i in range(wdw_length + delay_rnd, n_series): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) if C_plus[i] > L_plus: input_plus = boot[i + 1 - wdw_length:i + 1] break input_minus = boot[wdw_length:wdw_length * 2] #default is not alert C_minus = np.zeros((n_series, 1)) for j in range(wdw_length + delay_rnd, n_series): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) if C_minus[j] < L_minus: input_minus = boot[j + 1 - wdw_length:j + 1] break if i > j: #first alert recorded input_test[b, :] = input_minus else: input_test[b, :] = input_plus b += 1 sign = -sign ### compute accuracy and other precision measures label_pred = regressor.predict(input_test) label_pred_clf = clf.predict(input_test) if precision: #regressor MAPE = (1 / len(label_pred)) * sum( np.abs((label_test - label_pred) / label_test)) * 100 #NRMSE = np.sqrt(sum((label_test - label_pred)**2) / sum(label_test**2)) MSE = (1 / len(label_pred)) * sum((label_test - label_pred)**2) print('MAPE =', MAPE) print('MSE =', MSE) label_pred = abs(label_pred) label_test = abs(label_test) MAPE = (1 / len(label_pred)) * sum( np.abs((label_test - label_pred) / label_test)) * 100 #NRMSE = np.sqrt(sum((label_test - label_pred)**2) / sum(label_test**2)) MSE = (1 / len(label_pred)) * sum((label_test - label_pred)**2) print('MAPE without signs =', MAPE) print('MSE without signs =', MSE) #classifier accuracy = sum(label_pred_clf == form_test) * 100 / len(label_pred_clf) #MAE = (1/len(label_pred_clf)) * sum(np.abs(form_test - label_pred_clf)) #MSE = (1/len(label_pred_clf)) * sum((form_test - label_pred_clf)**2) print('Accuracy =', accuracy) ### compute the confusion matrix if confusion: class_names = ['jump', 'drift', 'oscill.'] titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(clf, input_test, form_test, display_labels=class_names, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) print(disp.confusion_matrix[2, 1] / n_test) plt.show() return (regressor, clf)
def input_vector_length(data, delta_min, L_plus, L_minus=None, k=None, nmc=4000, n=2000, qt=None, block_length=None, BB_method='MBB', plot=False): """ Computes the length of the input vector for the support vector machine procedures (svms). The length of the input vector represents the number of past observations that are fed to the svms after each alert. The regressor and classifier then predict the form and the size of the shift that causes the alert based on the input vector. Intuitively, the length should be sufficiently large to ensure that most of the shifts are contained within the input vector while maintaining the computing efficiency of the method. This is usually not a problem for the large shifts that are quickly detected by the chart. However the smallest shifts may be detected only after a certain amount of time and therefore require larger vectors. Hence, the length is selected as an upper quantile of the run length distribution, computed on data shifted by the smallest shift size that we aim to detect. It is implemented as follows. For each monte-carlo run, a new series of observations is sampled from the IC data using a block boostrap procedure. Then, a jump of size "delta_min' is simulated on top of the sample. The run length of the chart is then evaluated. The length of the input vector is finally selected as a specified quantile of the run length distribution. If the quantile is unspecified, an optimal quantile is selected by locating the 'knee' of the quantiles curve. Parameters: --------- data : 2D-array IC dataset (rows: time, columns: IC series). delta_min : float >= 0 The target minimum shift size. L_plus : float Value for the positive control limit. L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. k : float, optional The allowance parameter. The default is None. When None, k = delta/2 (optimal formula for iid normal data). nmc : int > 0, optional Number of Monte-Carlo runs. This parameter has typically a large value. Default is 2000. n : int >= 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 2000. qt : float in [0,1], optional Quantile of the run length distribution (used to select an appropriate input vector length). Default is None. When None, the appropriate quantile is selected with a knee locator. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. plot : bool, optional Flag to show the histogram of the run length distribution. Default is False. Returns ------- m : int > 0 The length of the input vector. """ assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) if 'blocks' in locals(): n_blocks = int(np.ceil(n / blocks.shape[1])) if k is None: k = delta_min / 2 if L_minus is None: L_minus = -L_plus n = int(n) assert n >= 0, "n must be superior or equal to zero" nmc = int(nmc) assert nmc > 0, "nmc must be strictly positive" RL1_plus = np.zeros((nmc, 1)) RL1_minus = np.zeros((nmc, 1)) RL1_plus[:] = np.nan RL1_minus[:] = np.nan for b in range(nmc): #sample data with BB and shift them by delta_min if BB_method == 'MABB': boot = bb.resample_MatchedBB(data, block_length, n=n) else: boot = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n] boot = boot + delta_min C_plus = np.zeros((n, 1)) for i in range(1, n): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) if C_plus[i] > L_plus: RL1_plus[b] = i break C_minus = np.zeros((n, 1)) for j in range(1, n): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) if C_minus[j] < L_minus: RL1_minus[b] = j break if np.isnan(RL1_plus[b]): RL1_plus[b] = n if np.isnan(RL1_minus[b]): RL1_minus[b] = n RL = (1 / (RL1_minus) + 1 / (RL1_plus))**(-1) if plot: plt.figure(1) plt.hist(RL[~np.isnan(RL)], range=[-4, 100], bins='auto', density=True, facecolor='b') plt.title("Run length distribution") plt.axis([-4, 100, 0, 0.2]) plt.grid(True) plt.show() if qt is not None: ### select m with a specified quantile m = int(np.quantile(RL[~np.isnan(RL)], qt)) else: ### select m with knee locator y = np.zeros((100)) c = 0 x = np.arange(1, 0.5, -0.05) for q in np.arange(1, 0.5, -0.05): y[c] = np.quantile(RL[~np.isnan(RL)], q) c += 1 y = y[:len(x)] if plot: plt.plot(x, y) plt.xlabel('quantile') plt.ylabel('run length') plt.title('Run length at different quantiles') plt.show() coef = np.polyfit(x, y, deg=1) coef_curve = np.polyfit(x, y, deg=2) if coef_curve[0] < 0: curve = 'concave' else: curve = 'convex' if coef[0] < 0: #slope is positive direction = 'decreasing' else: #slope is negative direction = 'increasing' kn = KneeLocator(x, y, curve=curve, direction=direction) knee = kn.knee m = int(np.quantile(RL[~np.isnan(RL)], knee)) return m
classifier = model_from_json(loaded_model_json) # load weights into new model classifier.load_weights("nn_models/rnn_classification_27.h5") #======================================================================== ### Compute the predictions (sizes and shapes) of the networks #======================================================================= ### for a particular station stat = [i for i in range(len(station_names)) if station_names[i] == 'UC'][0] ### separate the data from the selected station into blocks blocks = np.zeros((n_obs, block_length)) blocks[:] = np.nan blocks[block_length - 1:, :] = bb.MBB(data[:, stat].reshape(-1, 1), block_length, NaN=True, all_NaN=False) ### interpolate NaNs in input vectors input_valid, ind = svm.fill_nan(blocks) ### reshape input vectors to match input dimensions input_valid = np.reshape(input_valid, (input_valid.shape[0], 1, input_valid.shape[1])) ### apply classifier and regressor on (filled-up) input vectors size_pred = np.zeros((n_obs, 1)) size_pred[:] = np.nan shape_pred = np.zeros((n_obs)) shape_pred[:] = np.nan if len(ind) > 0: #at least one value size_pred[ind] = regressor.predict(input_valid)
def shifts_montgomery(data, L_plus, L_minus=None, delta=1.5, k=None, nmc=4000, n=2000, two_sided=True, block_length=None, missing_values='omit', gap=0, BB_method='MBB'): """ Estimates the shift sizes of the data with an optimal formula. The sizes of the shifts are estimated after each alert using a classical formula (Montgomery, Introduction to statistical quality control, 2004) on the out-of-control (OC) series. Parameters --------- data : 2D-array OC dataset (rows: time, columns: OC series). L_plus : float Value for the positive control limit. L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. delta : float, optional The target shift size. Default is 1.5. k : float, optional The allowance parameter. The default is None. When None, k = delta/2 (optimal formula for iid normal data). nmc : int > 0, optional Number of Monte-Carlo runs. This parameter has typically a large value. Default is 4000. n : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 4000. two_sided : bool, optional Flag to use two-sided CUSUM chart. Otherwise, the one-sided upper CUSUM chart is used. Default is True. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. missing_values : str, optional String that indicates how to deal with the missing values (MV). The string value should be chosen among: 'omit', 'reset' and 'fill': 'omit' removes the blocks containing MV ; 'fill' fills-up the MV by the mean of each series ; 'reset' resets the chart statistics at zero for gaps larger than a specified gap length (argument 'gap'). The chart statistics is simply propagated through smaller gaps. Default is 'omit'. gap : int >= 0, optional The length of the gaps above which the chart statistics are reset, expressed in number of obs. Default is zero. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. Returns -------- shifts : 1D-array The estimated shift sizes. """ assert np.ndim(data) == 2, "Input data must be a 2D array" if k is None: k = abs(delta) / 2 if L_minus is None: L_minus = -L_plus (n_obs, n_series) = data.shape assert missing_values in ['fill', 'reset', 'omit'], "Undefined value for 'missing_values'" if missing_values == 'fill': for i in range(n_series): data[np.isnan(data[:, i]), i] = np.nanmean(data[:, i]) #fill obs by the mean of the series ##Block bootstrap assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if missing_values == 'fill' or missing_values == 'omit': if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) else: if BB_method == 'MBB': blocks = bb.MBB(data, block_length, NaN=True) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length, NaN=True) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length, NaN=True) if 'blocks' in locals(): n_blocks = int(np.ceil(n / blocks.shape[1])) n = int(n) assert n > 0, "n must be strictly positive" nmc = int(nmc) assert nmc > 0, "nmc must be strictly positive" shift_hat_plus = np.zeros((nmc, 1)) shift_hat_minus = np.zeros((nmc, 1)) shift_hat_plus[:] = np.nan shift_hat_minus[:] = np.nan for b in range(nmc): if BB_method == 'MABB': boot = bb.resample_MatchedBB(data, block_length, n=n) else: boot = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n] C_plus = np.zeros((n, 1)) cp = 0 for i in range(1, n): if not np.isnan(boot[i]): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) cp = 0 elif (np.isnan(boot[i]) and cp < gap): C_plus[i] = C_plus[i - 1] cp += 1 else: C_plus[i] = 0 if C_plus[i] > L_plus: last_zero = np.where(C_plus[:i] == 0)[0][-1] shift_hat_plus[b] = k + C_plus[i] / (i - last_zero) break C_minus = np.zeros((n, 1)) cm = 0 for j in range(1, n): if not np.isnan(boot[j]): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) cm = 0 elif (np.isnan(boot[j]) and cm < gap): C_minus[j] = C_minus[j - 1] cm += 1 else: C_minus[j] = 0 if C_minus[j] < L_minus: last_zero = np.where(C_minus[:j] == 0)[0][-1] shift_hat_minus[b] = -k - C_minus[j] / (j - last_zero) break if two_sided: shifts = np.concatenate( (shift_hat_plus[np.where(~np.isnan(shift_hat_plus))], shift_hat_minus[np.where(~np.isnan(shift_hat_minus))])) else: shifts = shift_hat_plus[np.where(~np.isnan(shift_hat_plus))] return shifts
def ARL_values(data, L_plus, L_minus=None, form='jump', delta=1.5, k=None, nmc=4000, n=8000, two_sided=True, missing_values='omit', gap=0, block_length=None, BB_method='MBB'): """ Computes the in-control (IC) and out-of-control (OC) average run lengths (ARL0 and ARL1) of the CUSUM chart. The algorithm works as follows. For each monte-carlo run, a new series of observations is sampled from the IC data using a block boostrap procedure. The IC run length of the chart is then evaluated. A shift of specified form and size is also simulated on top of the sample and OC run length of the chart is computed. Finally, the OC and IC average run lengths are calculated over the runs. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). L_plus : float Value for the positive control limit. L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. form : str, optional String that represents the form of the shift that are simulated. The value of the string should be chosen among: 'jump', 'oscillation' or 'drift'. Default is 'jump'. delta : float, optional The target shift size. Default is 1.5. k : float, optional The allowance parameter (default is None). When None, k = delta/2 (optimal formula for normal data). The default is None. nmc : int > 0, optional Number of Monte-Carlo runs. This parameter has typically a large value. Default is 4000. n : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 4000. two_sided : bool, optional Flag to use two-sided CUSUM chart. Otherwise, the one-sided upper CUSUM chart is used. Default is True. missing_values : str, optional String that indicates how to deal with the missing values (MV). The string value should be chosen among: 'omit', 'reset' and 'fill': 'omit' removes the blocks containing MV ; 'fill' fills-up the MV by the mean of each series ; 'reset' resets the chart statistics at zero for gaps larger than a specified gap length (argument 'gap'). The chart statistics is simply propagated through smaller gaps. Default is 'omit'. gap : int >= 0, optional The length of the gaps above which the chart statistics are reset, expressed in number of obs. Default is zero. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. Returns -------- ARL1, ARL0: float The OC and IC average run lengths (ARL1 and ARL0) of the chart. """ assert np.ndim(data) == 2, "Input data must be a 2D array" (n_obs, n_series) = data.shape assert missing_values in ['fill', 'reset', 'omit'], "Undefined value for 'missing_values'" if missing_values == 'fill': for i in range(n_series): data[np.isnan(data[:, i]), i] = np.nanmean(data[:, i]) #fill obs by the mean of the series ##Block bootstrap assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if missing_values == 'fill' or missing_values == 'omit': if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) else: if BB_method == 'MBB': blocks = bb.MBB(data, block_length, NaN=True) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length, NaN=True) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length, NaN=True) if 'blocks' in locals(): n_blocks = int(np.ceil(n / blocks.shape[1])) #chart parameters assert form in ['jump', 'drift', 'oscillation'], "Undefined shift form" shift = delta if k is None: k = abs(delta) / 2 if L_minus is None: L_minus = -L_plus n = int(n) assert n > 0, "n must be strictly positive" n_shift = int(n / 2) nmc = int(nmc) assert nmc > 0, "nmc must be strictly positive" FP_minus = np.zeros((nmc, 1)) FP_plus = np.zeros((nmc, 1)) RL1_plus = np.zeros((nmc, 1)) RL1_minus = np.zeros((nmc, 1)) RL1_plus[:] = np.nan RL1_minus[:] = np.nan for b in range(nmc): if BB_method == 'MABB': boot = bb.resample_MatchedBB(data, block_length, n=n) else: boot = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n] if form == 'oscillation': eta = np.random.uniform(0.02, 0.2) boot[n_shift:] = np.sin( eta * np.pi * np.arange(n_shift)) * shift + boot[n_shift:] pass elif form == 'drift': power = np.random.uniform(1.5, 2) boot[n_shift:] = shift / (500) * (np.arange(n_shift)** power) + boot[n_shift:] pass else: boot[n_shift:] = boot[n_shift:] + shift pass cnt_plus = 0 cp = 0 C_plus = np.zeros((n, 1)) nan_p = np.zeros((n, 1)) for i in range(1, n): if not np.isnan(boot[i]): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) C_plus[n_shift] = 0 cp = 0 elif (np.isnan(boot[i]) and cp < gap): C_plus[n_shift] = 0 C_plus[i] = C_plus[i - 1] cp += 1 nan_p[i] = 1 else: C_plus[i] = 0 nan_p[i] = 1 if C_plus[i] > L_plus and i < n_shift + 1 and cnt_plus == 0: ind = nan_p[0:i] FP_plus[b] = i #-sum(ind) cnt_plus += 1 elif C_plus[i] > L_plus and i > n_shift: ind = nan_p[n_shift:i] RL1_plus[b] = i - n_shift #-sum(ind) break cnt_minus = 0 cm = 0 C_minus = np.zeros((n, 1)) nan_m = np.zeros((n, 1)) for j in range(1, n): if not np.isnan(boot[j]): C_minus[j] = min(0, C_minus[j - 1] + boot[j] + k) C_minus[n_shift] = 0 cm = 0 elif (np.isnan(boot[j]) and cm < gap): C_minus[n_shift] = 0 C_minus[j] = C_minus[j - 1] cm += 1 nan_m[j] = 1 else: C_minus[j] = 0 nan_m[j] = 1 if C_minus[ j] < L_minus and j < n_shift + 1 and cnt_minus == 0: # first false positive ind = nan_p[0:j] FP_minus[b] = j #-sum(ind) cnt_minus += 1 elif C_minus[j] < L_minus and j > n_shift: ind = nan_m[n_shift:j] RL1_minus[b] = j - n_shift #-sum(ind) break if np.isnan(RL1_plus[b]): RL1_plus[b] = n - n_shift if np.isnan(RL1_minus[b]): RL1_minus[b] = n - n_shift if FP_minus[b] == 0: FP_minus[b] = n_shift if FP_plus[b] == 0: FP_plus[b] = n_shift if two_sided: ARL1 = (1 / (np.nanmean(RL1_minus)) + 1 / (np.nanmean(RL1_plus)))**(-1) ARL0 = (1 / (np.nanmean(FP_minus)) + 1 / (np.nanmean(FP_plus)))**(-1) else: ARL1 = np.mean(RL1_plus) ARL0 = np.nanmean(FP_plus) return (ARL1, ARL0)
def ARL0_CUSUM(data, L_plus, L_minus=None, delta=1.5, k=None, nmc=4000, n=4000, two_sided=True, missing_values='omit', gap=0, block_length=None, BB_method='MBB'): """ Computes the in-control (IC) average run length (ARL0) of the CUSUM chart in presence of missing values. The algorithm works as follows. For each monte-carlo run, a new series of observations is sampled from the IC data using a block boostrap procedure. Then, the run length of the chart is evaluated. Finally, the average run length is calculated over the runs. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). L_plus : float Value for the positive control limit. L_minus : float, optional Value for the negative control limit. Default is None. When None, L_minus = - L_plus. delta : float, optional The target shift size. Default is 1.5. k : float, optional The allowance parameter When None, k = delta/2 (optimal formula for iid normal data). The default is None. nmc : int > 0, optional Number of Monte-Carlo runs. This parameter has typically a large value. Default is 4000. n : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 4000. two_sided : bool, optional Flag to use two-sided CUSUM chart. Otherwise, the one-sided upper CUSUM chart is used. Default is True. missing_values : str, optional String that indicates how to deal with the missing values (MV). The string value should be chosen among: 'omit', 'reset' and 'fill': 'omit' removes the blocks containing MV ; 'fill' fills-up the MV by the mean of each series ; 'reset' resets the chart statistics at zero for gaps larger than a specified gap length (argument 'gap'). The chart statistics is simply propagated through smaller gaps. Default is 'omit'. gap : int >= 0, optional The length of the gaps above which the chart statistics are reset, expressed in number of obs. Default is zero. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. Returns ------- ARL : float The IC average run length (ARL0). """ assert np.ndim(data) == 2, "Input data must be a 2D array" (n_obs, n_series) = data.shape assert missing_values in ['fill', 'reset', 'omit'], "Undefined value for 'missing_values'" if missing_values == 'fill': for i in range(n_series): data[np.isnan(data[:, i]), i] = np.nanmean(data[:, i]) #fill obs by the mean of the series ##Block bootstrap assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if missing_values == 'fill' or missing_values == 'omit': if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) else: if BB_method == 'MBB': blocks = bb.MBB(data, block_length, NaN=True) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length, NaN=True) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length, NaN=True) if 'blocks' in locals(): n_blocks = int(np.ceil(n / blocks.shape[1])) #chart parameters if k is None: k = abs(delta) / 2 if L_minus is None: L_minus = -L_plus n = int(n) assert n > 0, "n must be strictly positive" nmc = int(nmc) assert nmc > 0, "nmc must be strictly positive" RL_minus = np.zeros((nmc, 1)) RL_plus = np.zeros((nmc, 1)) RL_minus[:] = np.nan RL_plus[:] = np.nan for j in range(nmc): if BB_method == 'MABB': boot = bb.resample_MatchedBB(data, block_length, n=n) else: boot = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n] ### Monitoring ### C_plus = np.zeros((n, 1)) cp = 0 nan_p = 0 for i in range(1, n): if not np.isnan(boot[i]): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) cp = 0 elif (np.isnan(boot[i]) and cp < gap): C_plus[i] = C_plus[i - 1] cp += 1 nan_p += 1 else: C_plus[i] = 0 nan_p += 1 if C_plus[i] > L_plus: RL_plus[j] = i #-nan_p break C_minus = np.zeros((n, 1)) cm = 0 nan_m = 0 for i in range(1, n): if not np.isnan(boot[i]): C_minus[i] = min(0, C_minus[i - 1] + boot[i] + k) cm = 0 elif (np.isnan(boot[i]) and cm < gap): C_minus[i] = C_minus[i - 1] cm += 1 nan_m += 1 else: C_minus[i] = 0 nan_m += 1 if C_minus[i] < L_minus: RL_minus[j] = i #-nan_m break if np.isnan(RL_plus[j]): RL_plus[j] = n #-nan_p if np.isnan(RL_minus[j]): RL_minus[j] = n #-nan_m if two_sided: ARL = (1 / (np.mean(RL_minus)) + 1 / (np.mean(RL_plus)))**(-1) else: ARL = np.mean(RL_plus) return ARL
def limit_CUSUM(data, delta=1.5, k=None, ARL0_threshold=200, rho=2, L_plus=20, L_minus=0, nmc=4000, n=4000, two_sided=True, verbose=True, missing_values='omit', gap=0, block_length=None, BB_method='MBB'): """ Computes the control limit of the CUSUM chart in presence of missing values. The control limits of the chart are adjusted by a searching algorithm as follows. From initial values of the control limit, the actual IC average run length (ARL0) is computed on 'nmc' processes that are sampled with repetition from the IC data by the block bootstrap procedure. If the actual ARL0 is inferior (resp. superior) to the pre-specified ARL0, the control limit of the chart is increased (resp. decreased). This algorithm is iterated until the actual ARL0 reaches the pre-specified ARL0 at the desired accuracy. Parameters --------- data : 2D-array IC dataset (rows: time, columns: IC series). delta : float, optional The target shift size. Default is 1.5. k : float, optional The allowance parameter. The default is None. When None, k = delta/2 (optimal formula for iid normal data). ARL0_threshold : int > 0, optional Pre-specified value for the IC average run length (ARL0). This value is inversely proportional to the rate of false positives. Typical values are 100, 200 or 500. Default is 200. rho : float > 0, optional Accuracy to reach the pre-specified value for ARL0: the algorithm stops when |ARL0-ARL0_threshold| < rho. The default is 2. L_plus : float, optional Upper value for the positive control limit. Default is 60. L_minus : float, optional Lower value for the positive control limit. Default is 0. nmc : int > 0, optional Number of Monte-Carlo runs. This parameter has typically a large value. Default is 4000. n : int > 0, optional Length of the resampled series (by the block bootstrap procedure). Default is 4000. two_sided : bool, optional Flag to use two-sided CUSUM chart. Otherwise, the one-sided upper CUSUM chart is used. Default is True. Verbose : bool, optional Flag to print intermediate results. Default is True. missing_values : str, optional String that indicates how to deal with the missing values (MV). The string value should be chosen among: 'omit', 'reset' and 'fill': 'omit' removes the blocks containing MV ; 'fill' fills-up the MV by the mean of each series ; 'reset' resets the chart statistics at zero for gaps larger than a specified gap length (argument 'gap'). The chart statistics is simply propagated through smaller gaps. Default is 'omit'. gap : int >= 0, optional The length of the gaps above which the chart statistics are reset, expressed in number of obs. Default is zero. block_length : int > 0, optional The length of the blocks. Default is None. When None, the length is computed using an optimal formula. BB_method : str, optional String that designates the block boostrap method chosen for sampling data. Values for the string should be selected among: 'MBB': moving block bootstrap 'NBB': non-overlapping block bootstrap 'CBB': circular block bootstrap 'MABB': matched block bootstrap Default is 'MBB'. Returns ------ L : float The positive control limit of the chart (with this algorithm, it has the same value as the negative control limit, with opposite sign). """ assert np.ndim(data) == 2, "Input data must be a 2D array" (n_obs, n_series) = data.shape assert missing_values in ['fill', 'reset', 'omit'], "Undefined value for 'missing_values'" if missing_values == 'fill': for i in range(n_series): data[np.isnan(data[:, i]), i] = np.nanmean(data[:, i]) #fill obs by the mean of the series ##Block bootstrap assert BB_method in ['MBB', 'NBB', 'CBB', 'MABB'], "Undefined block bootstrap procedure" if missing_values == 'fill' or missing_values == 'omit': if BB_method == 'MBB': blocks = bb.MBB(data, block_length) elif BB_method == 'NBB': blocks = bb.NBB(data, block_length) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length) else: if BB_method == 'MBB': blocks = bb.MBB(data, block_length, NaN=True) #all_NaN=False elif BB_method == 'NBB': blocks = bb.NBB(data, block_length, NaN=True) elif BB_method == 'CBB': blocks = bb.CBB(data, block_length, NaN=True) if 'blocks' in locals(): n_blocks = int(np.ceil(n / blocks.shape[1])) #chart parameters if k is None: k = abs(delta) / 2 assert L_plus > L_minus, "L_plus should be superior than L_minus" L = (L_plus + L_minus) / 2 n = int(n) assert n > 0, "n must be strictly positive" nmc = int(nmc) assert nmc > 0, "nmc must be strictly positive" assert rho > 0, "rho must be strictly positive" assert ARL0_threshold > 0, "ARL0_threshold must be strictly positive" ARL = 0 while (np.abs(ARL - ARL0_threshold) > rho): RL_minus = np.zeros((nmc, 1)) RL_plus = np.zeros((nmc, 1)) RL_minus[:] = np.nan RL_plus[:] = np.nan for j in range(nmc): if BB_method == 'MABB': boot = bb.resample_MatchedBB(data, block_length, n=n) else: boot = resample(blocks, replace=True, n_samples=n_blocks).flatten()[:n] ### Monitoring ### C_plus = np.zeros((n, 1)) cp = 0 nan_p = 0 for i in range(1, n): if not np.isnan(boot[i]): C_plus[i] = max(0, C_plus[i - 1] + boot[i] - k) cp = 0 elif (np.isnan(boot[i]) and cp < gap): C_plus[i] = C_plus[i - 1] cp += 1 nan_p += 1 else: C_plus[i] = 0 nan_p += 1 if C_plus[i] > L: RL_plus[j] = i #-nan_p break C_minus = np.zeros((n, 1)) cm = 0 nan_m = 0 for i in range(1, n): if not np.isnan(boot[i]): C_minus[i] = min(0, C_minus[i - 1] + boot[i] + k) cm = 0 elif (np.isnan(boot[i]) and cm < gap): C_minus[i] = C_minus[i - 1] cm += 1 nan_m += 1 else: C_minus[i] = 0 nan_m += 1 if C_minus[i] < -L: RL_minus[j] = i #- nan_m break if np.isnan(RL_plus[j]): RL_plus[j] = n #- nan_p if np.isnan(RL_minus[j]): RL_minus[j] = n #- nan_m if two_sided: ARL = (1 / (np.mean(RL_minus)) + 1 / (np.mean(RL_plus)))**(-1) else: ARL = np.mean(RL_plus) if ARL < ARL0_threshold: L_minus = (L_minus + L_plus) / 2 elif ARL > ARL0_threshold: L_plus = (L_minus + L_plus) / 2 L = (L_plus + L_minus) / 2 if verbose: print(ARL) print(L) return L