def test_supervisedpcaRegressor_predict(): diabetes=datasets.load_diabetes() X = diabetes.data Y = diabetes.target spca = SupervisedPCARegressor() spca.fit(X, Y) predictions = spca.predict(X) mae=np.mean(abs(predictions-Y)) assert_almost_equal(mae,51.570682097)
def test_supervisedpcaRegressor_predict(): diabetes = datasets.load_diabetes() X = diabetes.data Y = diabetes.target spca = SupervisedPCARegressor() spca.fit(X, Y) predictions = spca.predict(X) mae = np.mean(abs(predictions - Y)) assert_almost_equal(mae, 51.570682097)
def test_supervisedpcaRegressor_fit(): # Test LinearRegression on a simple dataset. # a simple dataset diabetes=datasets.load_diabetes() X = diabetes.data Y = diabetes.target spca = SupervisedPCARegressor() spca.fit(X, Y,threshold=300,n_components=2) assert_array_equal(spca._leavouts,[1,5]) assert_almost_equal(spca._model.coef_[0], [-537.7584256])
def test_supervisedpcaRegressor_fit(): # Test LinearRegression on a simple dataset. # a simple dataset diabetes = datasets.load_diabetes() X = diabetes.data Y = diabetes.target spca = SupervisedPCARegressor() spca.fit(X, Y, threshold=300, n_components=2) assert_array_equal(spca._leavouts, [1, 5]) assert_almost_equal(spca._model.coef_[0], [-537.7584256])