def T1():
    '''
    Tests basic functionality of MLPR
    '''
    A = np.random.rand(32, 4)
    Y = np.random.rand(32, 1)
    a = MLPR([4, 4, 1], maxIter=16, name='mlpr1')
    a.fit(A, Y)
    a.score(A, Y)
    a.predict(A)
    return True
def T9():
    '''
    Tests if multiple MLPRs can be created without affecting each other
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16)
    m1.fit(A, Y)
    s1 = m1.score(A, Y)
    m2 = MLPR([4, 4, 1], maxIter=16)
    m2.fit(A, Y)
    s2 = m1.score(A, Y)
    if s1 != s2:
        return False
    return True