def T1(): ''' Tests basic functionality of MLPR ''' A = np.random.rand(32, 4) Y = np.random.rand(32, 1) a = MLPR([4, 4, 1], maxIter=16, name='mlpr1') a.fit(A, Y) a.score(A, Y) a.predict(A) return True
def T9(): ''' Tests if multiple MLPRs can be created without affecting each other ''' A = np.random.rand(32, 4) Y = (A.sum(axis=1)**2).reshape(-1, 1) m1 = MLPR([4, 4, 1], maxIter=16) m1.fit(A, Y) s1 = m1.score(A, Y) m2 = MLPR([4, 4, 1], maxIter=16) m2.fit(A, Y) s2 = m1.score(A, Y) if s1 != s2: return False return True