def test_train_step():
        input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
        input_lengths = torch.randint(100, 129, (8, )).long().to(device)
        input_lengths[-1] = 128
        mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device)
        linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device)
        mel_lengths = torch.randint(20, 120, (8, )).long().to(device)
        mel_lengths[-1] = 120
        stop_targets = torch.zeros(8, 120, 1).float().to(device)
        speaker_ids = torch.randint(0, 5, (8, )).long().to(device)

        for idx in mel_lengths:
            stop_targets[:, int(idx.item()):, 0] = 1.0

        stop_targets = stop_targets.view(input_dummy.shape[0],
                                         stop_targets.size(1) // c.r, -1)
        stop_targets = (stop_targets.sum(2) >
                        0.0).unsqueeze(2).float().squeeze()

        criterion = L1LossMasked(seq_len_norm=False).to(device)
        criterion_st = nn.BCEWithLogitsLoss().to(device)
        model = Tacotron(
            num_chars=32,
            num_speakers=5,
            gst=True,
            postnet_output_dim=c.audio['num_freq'],
            decoder_output_dim=c.audio['num_mels'],
            r=c.r,
            memory_size=c.memory_size
        ).to(device)  #FIXME: missing num_speakers parameter to Tacotron ctor
        model.train()
        print(model)
        print(" > Num parameters for Tacotron GST model:%s" %
              (count_parameters(model)))
        model_ref = copy.deepcopy(model)
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1
        optimizer = optim.Adam(model.parameters(), lr=c.lr)
        for _ in range(10):
            mel_out, linear_out, align, stop_tokens = model.forward(
                input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids)
            optimizer.zero_grad()
            loss = criterion(mel_out, mel_spec, mel_lengths)
            stop_loss = criterion_st(stop_tokens, stop_targets)
            loss = loss + criterion(linear_out, linear_spec,
                                    mel_lengths) + stop_loss
            loss.backward()
            optimizer.step()
        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            # ignore pre-higway layer since it works conditional
            assert (param != param_ref).any(
            ), "param {} with shape {} not updated!! \n{}\n{}".format(
                count, param.shape, param, param_ref)
            count += 1
Exemple #2
0
    def test_in_out(self):
        # test input == target
        layer = L1LossMasked()
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        # test input != target
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])

        # test if padded values of input makes any difference
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = ((sequence_mask(dummy_length).float() - 1.0) *
                100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])

        dummy_input = T.rand(4, 8, 128).float()
        dummy_target = dummy_input.detach()
        dummy_length = (T.arange(5, 9)).long()
        mask = ((sequence_mask(dummy_length).float() - 1.0) *
                100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 0, "0 vs {}".format(output.data[0])
Exemple #3
0
 def test_train_step(self):
     input = torch.randint(0, 24, (8, 128)).long().to(device)
     mel_spec = torch.rand(8, 30, c.num_mels).to(device)
     linear_spec = torch.rand(8, 30, c.num_freq).to(device)
     mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
     criterion = L1LossMasked().to(device)
     model = Tacotron(c.embedding_size, c.num_freq, c.num_mels,
                      c.r).to(device)
     model.train()
     model_ref = copy.deepcopy(model)
     count = 0
     for param, param_ref in zip(model.parameters(),
                                 model_ref.parameters()):
         assert (param - param_ref).sum() == 0, param
         count += 1
     optimizer = optim.Adam(model.parameters(), lr=c.lr)
     for i in range(5):
         mel_out, linear_out, align = model.forward(input, mel_spec)
         optimizer.zero_grad()
         loss = criterion(mel_out, mel_spec, mel_lengths)
         loss = 0.5 * loss + 0.5 * criterion(linear_out, linear_spec,
                                             mel_lengths)
         loss.backward()
         optimizer.step()
     # check parameter changes
     count = 0
     for param, param_ref in zip(model.parameters(),
                                 model_ref.parameters()):
         # ignore pre-higway layer since it works conditional
         if count not in [139, 59]:
             assert (param != param_ref).any(
             ), "param {} with shape {} not updated!! \n{}\n{}".format(
                 count, param.shape, param, param_ref)
         count += 1
Exemple #4
0
    def test_train_step(self):
        input = torch.randint(0, 24, (8, 128)).long().to(device)
        mel_spec = torch.rand(8, 30, c.num_mels).to(device)
        linear_spec = torch.rand(8, 30, c.num_freq).to(device)
        mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
        stop_targets = torch.zeros(8, 30, 1).float().to(device)

        for idx in mel_lengths:
            stop_targets[:, int(idx.item()):, 0] = 1.0

        stop_targets = stop_targets.view(input.shape[0],
                                         stop_targets.size(1) // c.r, -1)
        stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float()

        criterion = L1LossMasked().to(device)
        criterion_st = nn.BCELoss().to(device)
        model = Tacotron(c.embedding_size, c.num_freq, c.num_mels,
                         c.r).to(device)
        model.train()
        model_ref = copy.deepcopy(model)
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            assert (param - param_ref).sum() == 0, param
            count += 1
        optimizer = optim.Adam(model.parameters(), lr=c.lr)
        for i in range(5):
            mel_out, linear_out, align, stop_tokens = model.forward(
                input, mel_spec)
            assert stop_tokens.data.max() <= 1.0
            assert stop_tokens.data.min() >= 0.0
            optimizer.zero_grad()
            loss = criterion(mel_out, mel_spec, mel_lengths)
            stop_loss = criterion_st(stop_tokens, stop_targets)
            loss = loss + criterion(linear_out, linear_spec,
                                    mel_lengths) + stop_loss
            loss.backward()
            optimizer.step()
        # check parameter changes
        count = 0
        for param, param_ref in zip(model.parameters(),
                                    model_ref.parameters()):
            # ignore pre-higway layer since it works conditional
            if count not in [145, 59]:
                assert (param != param_ref).any(
                ), "param {} with shape {} not updated!! \n{}\n{}".format(
                    count, param.shape, param, param_ref)
            count += 1
Exemple #5
0
    def test_in_out(self):
        layer = L1LossMasked()
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.ones(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 0.0

        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.ones(4) * 8).long()
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
        dummy_input = T.ones(4, 8, 128).float()
        dummy_target = T.zeros(4, 8, 128).float()
        dummy_length = (T.arange(5, 9)).long()
        mask = ((sequence_mask(dummy_length).float() - 1.0) *
                100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
Exemple #6
0
    def test_in_out(self):
        layer = L1LossMasked()
        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.shape[0] == 0
        assert len(output.shape) == 1
        assert output.data[0] == 0.0

        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
        output = layer(dummy_input, dummy_target, dummy_length)
        assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])

        dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
        dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
        dummy_length = T.autograd.Variable((T.arange(5, 9)).long())
        mask = ((_sequence_mask(dummy_length).float() - 1.0) *
                100.0).unsqueeze(2)
        output = layer(dummy_input + mask, dummy_target, dummy_length)
        assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])
Exemple #7
0
def main(args):  #pylint: disable=redefined-outer-name
    # Audio processor
    ap = AudioProcessor(**c.audio)

    # DISTRUBUTED
    if num_gpus > 1:
        init_distributed(args.rank, num_gpus, args.group_id,
                         c.distributed["backend"], c.distributed["url"])
    num_chars = len(phonemes) if c.use_phonemes else len(symbols)

    if c.use_speaker_embedding:
        speakers = get_speakers(c.data_path, c.meta_file_train, c.dataset)
        if args.restore_path:
            prev_out_path = os.path.dirname(args.restore_path)
            speaker_mapping = load_speaker_mapping(prev_out_path)
            assert all([speaker in speaker_mapping
                        for speaker in speakers]), "As of now you, you cannot " \
                                                   "introduce new speakers to " \
                                                   "a previously trained model."
        else:
            speaker_mapping = {name: i for i, name in enumerate(speakers)}
        save_speaker_mapping(OUT_PATH, speaker_mapping)
        num_speakers = len(speaker_mapping)
        print("Training with {} speakers: {}".format(num_speakers,
                                                     ", ".join(speakers)))
    else:
        num_speakers = 0

    model = setup_model(num_chars, num_speakers, c)

    print(" | > Num output units : {}".format(ap.num_freq), flush=True)

    optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0)
    if c.stopnet and c.separate_stopnet:
        optimizer_st = RAdam(model.decoder.stopnet.parameters(),
                             lr=c.lr,
                             weight_decay=0)
    else:
        optimizer_st = None

    if c.loss_masking:
        criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"
                                                  ] else MSELossMasked()
    else:
        criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"
                                               ] else nn.MSELoss()
    criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None

    if args.restore_path:
        checkpoint = torch.load(args.restore_path)
        try:
            # TODO: fix optimizer init, model.cuda() needs to be called before
            # optimizer restore
            # optimizer.load_state_dict(checkpoint['optimizer'])
            if c.reinit_layers:
                raise RuntimeError
            model.load_state_dict(checkpoint['model'])
        except:
            print(" > Partial model initialization.")
            model_dict = model.state_dict()
            model_dict = set_init_dict(model_dict, checkpoint, c)
            model.load_state_dict(model_dict)
            del model_dict
        for group in optimizer.param_groups:
            group['lr'] = c.lr
        print(" > Model restored from step %d" % checkpoint['step'],
              flush=True)
        args.restore_step = checkpoint['step']
    else:
        args.restore_step = 0

    if use_cuda:
        model = model.cuda()
        criterion.cuda()
        if criterion_st:
            criterion_st.cuda()

    # DISTRUBUTED
    if num_gpus > 1:
        model = apply_gradient_allreduce(model)

    if c.lr_decay:
        scheduler = NoamLR(optimizer,
                           warmup_steps=c.warmup_steps,
                           last_epoch=args.restore_step - 1)
    else:
        scheduler = None

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)

    if 'best_loss' not in locals():
        best_loss = float('inf')

    global_step = args.restore_step
    for epoch in range(0, c.epochs):
        # set gradual training
        if c.gradual_training is not None:
            r, c.batch_size = gradual_training_scheduler(global_step, c)
            c.r = r
            model.decoder.set_r(r)
        print(" > Number of outputs per iteration:", model.decoder.r)

        train_loss, global_step = train(model, criterion, criterion_st,
                                        optimizer, optimizer_st, scheduler, ap,
                                        global_step, epoch)
        val_loss = evaluate(model, criterion, criterion_st, ap, global_step,
                            epoch)
        print(" | > Training Loss: {:.5f}   Validation Loss: {:.5f}".format(
            train_loss, val_loss),
              flush=True)
        target_loss = train_loss
        if c.run_eval:
            target_loss = val_loss
        best_loss = save_best_model(model, optimizer, target_loss, best_loss,
                                    OUT_PATH, global_step, epoch)
Exemple #8
0
model = setup_model(num_chars, num_speakers, C)
checkpoint = torch.load(MODEL_FILE)
model.load_state_dict(checkpoint['model'])
print(checkpoint['step'])
model.eval()
if use_cuda:
    model = model.cuda()

# ### Generate model outputs
import pickle

file_idxs = []
losses = []
postnet_losses = []
criterion = L1LossMasked()
for data in tqdm(loader):
    # setup input data
    text_input = data[0]
    text_lengths = data[1]
    speaker_names = data[2]
    linear_input = data[3] if C.model in ["Tacotron", "TacotronGST"] else None
    mel_input = data[4]
    mel_lengths = data[5]
    stop_targets = data[6]
    item_idx = data[7]

    if C.use_speaker_embedding:
        speaker_ids = [
            speaker_mapping[speaker_name] for speaker_name in speaker_names
        ]