Exemple #1
0
    def _model_infer_to_count(self, lstm_output, mask_list, model_params):
        wd = model_params["weight_decay"]
        desmap_scale = model_params["desmap_scale"]

        count_list = list()
        with tf.variable_scope("count_fc"):
            for i, output in enumerate(lstm_output):
                if i != 0:
                    tf.get_variable_scope().reuse_variables()

                count_bias = mf.fully_connected_layer(output, 1, wd, "fc")

                count_bias_decay = tf.mul(tf.nn.l2_loss(count_bias),
                                          wd,
                                          name='bias_decay_%d' % i)
                tf.add_to_collection("losses", count_bias_decay)

                pred_img = self._filter_mask(self.predict_list[i][-1],
                                             mask_list[i])
                image_sum = tf.expand_dims(tf.reduce_sum(pred_img, [1, 2, 3]),
                                           1) / desmap_scale

                count = count_bias + image_sum

                tf.summary.scalar("check/image_sum/%d" % (i),
                                  tf.reduce_mean(image_sum))
                tf.summary.scalar("check/count_bias/%d" % (i),
                                  tf.reduce_mean(count_bias))

                count_list.append(count)
        return count_list
    def model_infer(self, data_ph, model_params):
        input_ph = data_ph.get_input()
        leaky_param = model_params["leaky_param"]
        wd = model_params["weight_decay"]

        image_ph_0 = tf.image.resize_images(input_ph, [72, 72])
        stage_0 = self._single_hydra_cnn(image_ph_0, model_params, 0)
        print(stage_0)

        image_ph_1 = iuf.batch_center_crop_frac(image_ph_0, 0.9)
        image_ph_1 = tf.image.resize_images(image_ph_1, [72, 72])
        stage_1 = self._single_hydra_cnn(image_ph_1, model_params, 1)
        print(stage_1)

        image_ph_2 = iuf.batch_center_crop_frac(image_ph_0, 0.8)
        image_ph_2 = tf.image.resize_images(image_ph_2, [72, 72])
        stage_2 = self._single_hydra_cnn(image_ph_2, model_params, 2)
        print(stage_2)

        concat_feature = tf.concat(1, [stage_0, stage_1, stage_2])
        print(concat_feature)

        fc6 = mf.fully_connected_layer(concat_feature, 1024, wd, "fc6")
        fc7 = mf.fully_connected_layer(fc6, 1024, wd, "fc7")
        fc8 = mf.fully_connected_layer(fc7, 1024, wd, "fc8")

        batch_size = model_params["batch_size"]
        output = tf.expand_dims(tf.reshape(fc8, [batch_size, 32, 32]), 3)
        print(output)

        l_ph_r = model_params["label_ph_row"]
        l_ph_c = model_params["label_ph_col"]

        resized_output = tf.image.resize_images(output, [l_ph_r, l_ph_c])
        print(resized_output)

        with tf.variable_scope("image_sum"):
            self._add_image_sum(data_ph.get_input(), data_ph.get_label(),
                                resized_output, data_ph.get_mask())

        self.predict_list = list()
        self.predict_list.append(resized_output)
Exemple #3
0
    def _model_infer_to_count(self, lstm_output, model_params):
        wd = model_params["weight_decay"]
        count_list = list()
        with tf.variable_scope("count_fc"):
            for i, output in enumerate(lstm_output):
                if i != 0:
                    tf.get_variable_scope().reuse_variables()

                count = mf.fully_connected_layer(output, 1, wd, "fc")
                count_list.append(count)
        return count_list