Exemple #1
0
def create_bst(lst, start, end):
    """
    Create a BST with minimal height
    Args:
        lst(List): A sorted array with unique integer elements
        start(int): Starting index
        end(int): Last index
    Returns:
        Integer/None: Value of root of each subtree
    """
    if end < start:
        return None
    mid = (start + end) // 2
    root = BinaryTree(lst[mid])
    root.left_child = create_bst(lst, start, mid - 1)
    root.right_child = create_bst(lst, mid + 1, end)
    # post-order traversal
    print(root.get_root_val())
    return root
Exemple #2
0
    Checks if a binary tree is a BST
    Args:
        root(BinaryTree): The root of the tree
        min(int/None)
        max(int/None)
    Returns:
        Boolean: Indicates whether a BST or not
    """
    if root is None:
        return True

    # base case
    if ((min is not None and root.get_root_val() <= min)
            or (max is not None and root.get_root_val() > max)):
        return False

    if (not check_bst(root.left_child, min, root.get_root_val())
            or not check_bst(root.right_child, root.get_root_val(), max)):
        return False

    return True


r = BinaryTree(5)
r.insert_left(3)
r.insert_right(7)
r.get_left_child().insert_left(1)
r.get_left_child().insert_right(4)

print(check(r))
Exemple #3
0
    lst = []

    # if list element with index = depth does not exist
    if len(lists) == level:
        lists.append(lst)
    # if list element with index = depth does exist
    else:
        lst = lists[level]
    lst.append(root.get_root_val())
    create_level_linked_list(root.left_child, lists, level + 1)
    create_level_linked_list(root.right_child, lists, level + 1)


def create_levels(root):
    lists = []
    create_level_linked_list(root, lists, 0)
    return lists


r = BinaryTree('a')
r.insert_left('b')
r.insert_right('c')
r.get_left_child().insert_left('d')
r.get_left_child().insert_right('e')
r.get_right_child().insert_left('f')
r.get_right_child().insert_right('g')

new_lists = create_levels(r)
print(new_lists)
Exemple #4
0
        return Result(root, is_ancestor)
    else:
        return Result(rx.node if rx.node is not None else ry.node, False)


def common_ancestor(root, p, q):
    """
    Main function to run
    Args:
        root(BinaryTree): root of the tree
        p(BinaryTree): the first node
        q(BinaryTree): the second node
    Returns:
        BinaryTree/None: A binary tree node if common ancestor exists else None
    """
    r = common_ancestor_helper(root, p, q)
    if r.isAncestor:
        return r.node
    return None


r = BinaryTree(10)
r.insert_left(7)
r.insert_right(15)
r.left_child.insert_left(6)
r.left_child.insert_right(8)
r.left_child.right_child.insert_right(9)
r.right_child.insert_left(13)
r.right_child.insert_right(17)

print(common_ancestor(r, r.left_child, r.left_child.left_child).get_root_val())
Exemple #5
0
    """
    # If both are empty
    if n1 is None and n2 is None:
        return True
    # If one but not both are empty
    if n1 is None or n2 is None:
        return False
    # If values don't match
    if n1.get_root_val() != n2.get_root_val():
        return False
    return match_tree(n1.left_child, n2.left_child) and\
           match_tree(n1.right_child, n2.right_child)


# T1
tree1 = BinaryTree(10)
tree1.insert_left(7)
tree1.insert_right(15)
tree1.left_child.insert_left(6)
tree1.left_child.insert_right(8)
tree1.left_child.right_child.insert_right(9)
tree1.right_child.insert_left(13)
tree1.right_child.insert_right(17)

# T2
tree2 = BinaryTree(7)
tree2.insert_left(6)
tree2.insert_right(8)
tree2.right_child.insert_right(9)

print(contains_tree(tree1, tree2))
        if temp == _sum:
            print_path(path, i, level)

    find_sum(node.left_child, _sum, path, level+1)
    find_sum(node.right_child, _sum, path, level+1)

    path[level] = -sys.maxsize - 1


def main(node, _sum):
    """
    Main function to call
    Args:
        node(BinaryTree): The node to begin calculating
        _sum(Integer): The given sum
    """
    d = depth(node)
    path = [0]*d
    find_sum(node, _sum, path, 0)

tree1 = BinaryTree(10)
tree1.insert_left(7)
tree1.insert_right(15)
tree1.left_child.insert_left(6)
tree1.left_child.insert_right(8)
tree1.left_child.right_child.insert_right(9)
tree1.right_child.insert_left(13)
tree1.right_child.insert_right(17)

main(tree1, 25)