def solve_heatExchanger(self, device: HeatExchanger): """Constructs the heat balance equation over the flows entering and exiting the heat exchanger. If equation is solvable as is (i.e. has 1 unknown), calculates the missing property and sets its value in the relevant object.""" # m1h11 + m2h21 + m3h31 = m1h12 + m2h22 + m3h32 # m1(h1i - h1o) + m2(h2i - h2o) + m3(h3i - h3o) = 0 # heatBalance = LinearEquation([ [ ( (state_in, 'flow.massFF'), state_in.h - state_out.h) for state_in, state_out in device.lines], 0 ]) heatBalance_LHS = [] for state_in, state_out in device.lines: heatBalance_LHS.append( ((state_in.flow, 'massFF'), (state_in, 'h'))) heatBalance_LHS.append( ((-1), (state_out.flow, 'massFF'), (state_out, 'h'))) heatBalance = LinearEquation(LHS=heatBalance_LHS, RHS=0) if heatBalance.isSolvable( ): # if solvable by itself, there is only one unknown solution = heatBalance.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: self._equations.append(heatBalance) heatBalance.source = device
def _solve_combination_ofEquations(self, number_ofEquations: int): """Iterates through combinations of equations (from the _equations pool) with the specified number_ofEquations. For each combination, checks if the system is solvable. If so, solves it, assigns the unknowns the solution values and removes the solved equations from the _equations pool.""" for equationCombination in combinations(self._equations, number_ofEquations): # If any of the equations got solved in a previous iteration and got removed from _equations, skip this combination # Combinations are generated beforehand at the beginning of the main for loop. if any(equation not in self._equations for equation in equationCombination): continue if (system := System_ofLinearEquations( list(equationCombination))).isSolvable(): solution = system.solve() unknownAddresses = list(solution.keys()) for unknownAddress in unknownAddresses: setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) # If system is solved, all equations in the combination is solved. Remove them from equations pool. for equation in equationCombination: self._equations.remove(equation)
def _add_pressureRatioRelation(self, device: WorkDevice): """Adds a linear equation describing the relation between end state pressures and the pressure ratio parameter of the work device. Works only with work devices that have one state_in and one states_out.""" state_out = device.states_out[0] if isinstance(device, (Compressor, Pump)): # Compression pressureRatioRelation_LHS = [((device, 'pressureRatio'), (device.state_in, 'P')), (-1, (state_out, 'P'))] else: assert isinstance(device, Turbine) # Expansion pressureRatioRelation_LHS = [((device, 'pressureRatio'), (state_out, 'P')), (-1, (device.state_in, 'P'))] pressureRatioRelation = LinearEquation(LHS=pressureRatioRelation_LHS, RHS=0) device._pressureRatioRelationSetup = True if pressureRatioRelation.isSolvable(): solution = pressureRatioRelation.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: pressureRatioRelation.source = device self._equations.append(pressureRatioRelation)
def _solve_solvableEquations(self): solvedEquations = [] for equation in self._equations: equation.update() if equation.isSolvable(): solution = equation.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) solvedEquations.append(equation) for equation in solvedEquations: self._equations.remove(equation)
def solve_mixingChamber(self, device: MixingChamber): """Sets or verifies common mixing pressure on all end states. Does mass & heat balances on flows.""" # Infer constant mixing pressure sampleState_withPressure = None for endState in device.endStates: if isNumeric(endState.P): sampleState_withPressure = endState break if sampleState_withPressure is not None: for endState in [ state for state in device.endStates if state is not sampleState_withPressure ]: endState.set_or_verify({'P': sampleState_withPressure.P}) # Construct the equations # m1 + m2 + m3 - m4 = 0 massBalance_LHS = [] for state_in in device.states_in: massBalance_LHS.append((1, (state_in.flow, 'massFF'))) massBalance_LHS.append((-1, (device.state_out.flow, 'massFF'))) massBalance = LinearEquation(LHS=massBalance_LHS, RHS=0) # m1h1 + m2h2 + m3h3 - m4h4 = 0 heatBalance_LHS = [] for state_in in device.states_in: heatBalance_LHS.append( ((state_in.flow, 'massFF'), (state_in, 'h'))) heatBalance_LHS.append( (-1, (device.state_out.flow, 'massFF'), (device.state_out, 'h'))) heatBalance = LinearEquation(LHS=heatBalance_LHS, RHS=0) for equation in [massBalance, heatBalance]: if equation.isSolvable(): solution = equation.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: self._equations.append(equation) equation.source = device
def _add_turbineMassBalance(self, device: Turbine): """Creates a mass balance equation for flows entering/exiting a turbine.""" massBalance_LHS = [] massBalance_LHS.append((1, (device.state_in.flow, 'massFF'))) for state_out in device.states_out: massBalance_LHS.append((-1, (state_out.flow, 'massFF'))) massBalance = LinearEquation(LHS=massBalance_LHS, RHS=0) massBalance.source = device if massBalance.isSolvable(): solution = massBalance.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: self._equations.append(massBalance)
def _solveDevice(self, device: Device): endStates = device.endStates if isinstance(device, WorkDevice): # Apply isentropic efficiency relations to determine outlet state self.solve_workDevice(device) # if not self._initialSolutionComplete: # the below processes do not need to be done in each flow solution iteration, but only for the initial one if isinstance(device, HeatDevice): # Setting end state pressures to be the same if device._infer_constant_pressure: device.infer_constant_pressure() if isinstance( device, ReheatBoiler): # reheat boilers can have multiple lines. # Setting up fixed exit temperature if inferring exit temperature from one exit state if device._infer_fixed_exitT: device.infer_fixed_exitT() elif isinstance(device, Intercooler): if device.coolTo == 'ideal': # Cool to the temperature of the compressor inlet state assert isinstance( (compressorBefore := self.get_itemRelative( device, -2)), Compressor ) # before intercooler, there should be compressor exit state, and then a compressor device.state_out.set_or_verify( {'T': compressorBefore.state_in.T}) else: # Cool to specified temperature assert isNumeric(device.coolTo) device.state_out.set_or_verify({'T': device.coolTo}) elif isinstance(device, GasReheater): if device.heatTo == 'ideal': # Heat to the temperature of the turbine inlet state assert isinstance( (turbineBefore := self.get_itemRelative(device, -2)), Turbine) device.state_out.set_or_verify( {'T': turbineBefore.state_in.T}) elif device.heatTo == 'heatSupplied': if not self._initialSolutionComplete: assert isNumeric(device.sHeatSupplied) if not self.constant_c: sHeatSuppliedRelation = LinearEquation( LHS=[(1, (device.state_out, 'h')), (-1, (device.state_in, 'h'))], RHS=device.sHeatSupplied) else: sHeatSuppliedRelation = LinearEquation( LHS=[(1, self.workingFluid.cp, (device.state_out, 'T')), (-1, self.workingFluid.cp, (device.state_in, 'T'))], RHS=device.sHeatSupplied) self._equations.append(sHeatSuppliedRelation) if sHeatSuppliedRelation.isSolvable(): solution = sHeatSuppliedRelation.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress( object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: sHeatSuppliedRelation.source = device self._equations.append(sHeatSuppliedRelation) else: # Heat to specified temperature assert isNumeric(device.heatTo) device.state_out.set_or_verify({'T': device.heatTo}) elif isinstance(device, HeatExchanger): # Setting end state pressures along the same line if pressures is assumed constant along each line if device._infer_constant_linePressures: device.infer_constant_linePressures() # Setting temperature of exit states equal for all lines # TODO - not the ideal place - inter-flow operation should ideally be in cycle scope if device._infer_common_exitTemperatures: device.infer_common_exitTemperatures() elif isinstance(device, MixingChamber): # Setting pressures of all in / out flows to the same value if device._infer_common_mixingPressure: device.infer_common_mixingPressure() elif isinstance(device, Trap): if device._infer_constant_enthalpy: device.infer_constant_enthalpy() self._defineStates_ifDefinable(endStates)
def solve_regenerator(self, device: Regenerator): if all( isNumeric(line[0].T) for line in device.lines ): # Need inlet temperatures of both lines to determine in which direction heat will flow warmLine, coldLine = device.lines if device.lines[1][0].T > device.lines[0][ 0].T: # state_in of device.lines[1] coldLine, warmLine = device.lines warm_in, warm_out = warmLine cold_in, cold_out = coldLine assert warm_in.flow.constant_c == cold_in.flow.constant_c, 'solve_regenerator: Flows of the warm and cold lines have different constant_c settings! Not allowed.' constant_c = warm_in.flow.constant_c if device.counterFlow_commonColdTemperature: warm_out.set_or_verify({'T': cold_in.T}) heatBalance_LHS = [] # warm_mFF*(warm_in.h - warm_out.h)*effectiveness = cold_mFF*(cold_out.h - cold_in.h) # warm_mFF*(warm_in.h - warm_out.h)*effectiveness + cold_mFF*(cold_in.h - cold_out.h) = 0 if constant_c: assert isNumeric(warm_in.flow.workingFluid.cp) heatBalance_LHS.append( ((device.effectiveness), (warm_in.flow, 'massFF'), (warm_in.flow.workingFluid.cp), (warm_in, 'T'))) heatBalance_LHS.append( ((device.effectiveness), (-1), (warm_out.flow, 'massFF'), (warm_out.flow.workingFluid.cp), (warm_out, 'T'))) heatBalance_LHS.append( ((cold_in.flow, 'massFF'), (cold_in.flow.workingFluid.cp), (cold_in, 'T'))) heatBalance_LHS.append( ((-1), (cold_out.flow, 'massFF'), (cold_out.flow.workingFluid.cp), (cold_out, 'T'))) else: heatBalance_LHS.append( ((device.effectiveness), (warm_in.flow, 'massFF'), (warm_in, 'h'))) heatBalance_LHS.append( ((device.effectiveness), (-1), (warm_out.flow, 'massFF'), (warm_out, 'h'))) heatBalance_LHS.append( ((cold_in.flow, 'massFF'), (cold_in, 'h'))) heatBalance_LHS.append( ((-1), (cold_out.flow, 'massFF'), (cold_out, 'h'))) heatBalance = LinearEquation(LHS=heatBalance_LHS, RHS=0) if heatBalance.isSolvable( ): # if solvable by itself, there is only one unknown solution = heatBalance.solve() unknownAddress = list(solution.keys())[0] setattr_fromAddress(object=unknownAddress[0], attributeName=unknownAddress[1], value=solution[unknownAddress]) self._updatedUnknowns.add(unknownAddress) else: self._equations.append(heatBalance) heatBalance.source = device return True else: return False