Exemple #1
0
 def test_ValidCellNum(self):
     """Testing validCellNum"""
     knownValues = ((-10, False), (0, True), (100, True), (175, True),
                    (176, False), (2000, False))
     for cell, valid in knownValues:
         result = statutils.validCellNum(cell, self.gridLimit,
                                         self.gridSpace)
         self.assertEqual(result, valid)
Exemple #2
0
    def extractParameters(self, cellNum):
        """
        Extracts cyclone parameters for a given cell
        """
        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            raise ValueError, "Invalid input on cellNum: cell number is out of range"
        lon = self.lonlat[:, 0]
        lat = self.lonlat[:, 1]
        wLon, nLat = stats.getCellLonLat(cellNum, self.gridLimit, self.gridSpace)
        eLon = wLon + self.gridSpace["x"]
        sLat = nLat - self.gridSpace["y"]

        indij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon) & (lon < eLon))
        self.bearing = myutils.removeNum(self.bearing_list[indij])
        self.speed = myutils.removeNum(self.speed_list[indij])
        self.pressure = myutils.removeNum(self.pressure_list[indij])
        self.bearingRate = myutils.removeNum(self.bearingRate_list[indij])
        self.speedRate = myutils.removeNum(self.speedRate_list[indij])
        self.pressureRate = myutils.removeNum(self.pressureRate_list[indij])
Exemple #3
0
    def extractParameters(self, cellNum):
        """
        Extracts cyclone parameters for a given cell
        """
        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            raise ValueError, 'Invalid input on cellNum: cell number is out of range'
        lon = self.lonlat[:,0]
        lat = self.lonlat[:,1]
        wLon, nLat = stats.getCellLonLat(cellNum, self.gridLimit,
                                         self.gridSpace)
        eLon = wLon + self.gridSpace['x']
        sLat = nLat - self.gridSpace['y']

        indij = np.where(((lat >= sLat) & (lat < nLat)) & \
                         (lon >= wLon) & (lon < eLon))
        self.bearing = myutils.removeNum(self.bearing_list[indij])
        self.speed = myutils.removeNum(self.speed_list[indij])
        self.pressure = myutils.removeNum(self.pressure_list[indij])
        self.bearingRate = myutils.removeNum(self.bearingRate_list[indij])
        self.speedRate = myutils.removeNum(self.speedRate_list[indij])
        self.pressureRate = myutils.removeNum(self.pressureRate_list[indij])
    def extractParameter(self, cellNum):
        """extractParameter(cellNum):
        Extracts the cyclone parameter data for the given cell.
        If the population of a cell is insufficient for generating a
        PDF, the bounds of the cell are expanded until the population is
        sufficient.

        Null/missing values are removed.
        """
        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            self.logger.critical("Invalid input on cellNum: cell number %i is out of range"%cellNum)
            raise InvalidArguments, 'Invalid input on cellNum: cell number is out of range'
        lon = self.lonLat[:,0]
        lat = self.lonLat[:,1]
        cellLon, cellLat = stats.getCellLonLat(cellNum, self.gridLimit,
                                               self.gridSpace)

        wLon = cellLon
        eLon = cellLon + self.gridSpace['x']
        nLat = cellLat
        sLat = cellLat - self.gridSpace['y']

        indij = np.where(((lat >= sLat) & (lat < nLat)) &
                          (lon >= wLon) & (lon < eLon))
        parameter_ = self.pList[indij]
        self.parameter = stats.statRemoveNum(np.array(parameter_),
                                             self.missingValue)

        while np.size(self.parameter) <= self.minSamplesCell:
            self.logger.debug("Insufficient samples. Increasing the size of the cell")
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            if (wLon == wLon_last) & (eLon == eLon_last) & (nLat == nLat_last) & (sLat == sLat_last):
                errMsg = "Insufficient grid points in selected domain to " \
                       + "estimate storm statistics - please select a larger " \
                       + "domain. Samples = %i / %i" % (np.size(self.parameter), 
                                                        self.minSamplesCell)
                self.logger.critical(errMsg)
                raise StopIteration, errMsg
            indij = np.where(((lat >= sLat) & (lat < nLat)) &
                              ((lon >= wLon) & (lon < eLon)))
            parameter_ = self.pList[indij]
            self.parameter = stats.statRemoveNum(np.array(parameter_),
                                                 self.missingValue)

        # Check to see if all values in the array are the same. If the
        # values are the same, bandwidth would be 0, and therefore KDE
        # cannot proceed
        while self.parameter.max() == self.parameter.min():
            self.logger.debug("Parameter values appear to be the same. Increasing the size of the cell")
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon,
                                                      eLon, nLat, sLat)
            if (wLon == wLon_last) & (eLon == eLon_last) & (nLat == nLat_last) & (sLat == sLat_last):
                errMsg = "Insufficient grid points in selected domain to estimate storm statistics - please select a larger domain."
                self.logger.critical(errMsg)
                raise StopIteration, errMsg
            indij = np.where(((lat >= sLat) & (lat < nLat)) &
                              ((lon >= wLon) & (lon < eLon)))
            parameter_ = self.pList[indij]
            self.parameter = stats.statRemoveNum(np.array(parameter_),
                                                 self.missingValue)
        self.logger.debug("Number of valid observations in cell %s : %s" %
                      (str(cellNum), str(np.size(self.parameter))))
Exemple #5
0
    def extractParameter(self, cellNum, onLand):
        """
        Extracts the cyclone parameter data for the given cell.
        If the population of a cell is insufficient for generating a
        PDF, the bounds of the cell are expanded until the population is
        sufficient.

        Null/missing values are removed.

        :param int cellNum: The cell number to process.
        :returns: None. The :attr:`parameter` attribute is updated.
        :raises InvalidArguments: if the cell number is not valid
                                  (i.e. if it is outside the possible
                                  range of cell numbers).
        
        """

        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            self.logger.critical("Invalid input on cellNum: cell number %i is out of range"%cellNum)
            raise InvalidArguments, 'Invalid input on cellNum: cell number %i is out of range'%cellNum
        cellLon, cellLat = stats.getCellLonLat(cellNum, self.gridLimit,
                                               self.gridSpace)
        wLon = cellLon
        eLon = cellLon + self.gridSpace['x']
        nLat = cellLat
        sLat = cellLat - self.gridSpace['y']

        lon = self.lonLat[:,0]
        lat = self.lonLat[:,1]
        lsflag = self.lonLat[:,2]

        if onLand:
            ij = np.where(((lat >= sLat) & (lat < nLat)) &
                       (lon >= wLon) & (lon < eLon) & (lsflag>0))
        else:
            ij = np.where(((lat >= sLat) & (lat < nLat)) &
                       (lon >= wLon) & (lon < eLon) & (lsflag==0))

        p_ = self.param[ij]
        p = stats.statRemoveNum(np.array(p_), self.missingValue)

        while np.size(p) <= self.minSample:
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            # Check if grid has reached maximum extent
            if (wLon == wLon_last) & (eLon == eLon_last) & (nLat == nLat_last) & (sLat == sLat_last):
                if onLand:
                    if not self.domain_warning_raised:
                        self.domain_warning_raised = True
                        self.logger.warning("Insufficient grid points over land in selected domain to estimate storm statistics - reverting to statistics for open ocean.")
                    return self.extractParameter(cellNum, False)
                else:
                    errMsg = ("Insufficient grid points in selected "
                              "domain to estimate storm statistics - "
                              "please select a larger domain.")
                    self.logger.critical(errMsg)
                    raise StopIteration, errMsg

            if onLand:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon) &
                           (lon < eLon) & (lsflag>0))
            else:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon) &
                           (lon < eLon) & (lsflag==0))
            p_ = self.param[ij]
            p = stats.statRemoveNum(np.array(p_), self.missingValue)

        # Check to see if all values in the np.array are the same. If the values
        # are the same, bandwidth would be 0, and therefore KDE cannot be generated
        while p.max() == p.min():
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            # Check if grid has reached maximum extent
            if (wLon == wLon_last) & (eLon == eLon_last) & (nLat == nLat_last) & (sLat == sLat_last):
                if onLand:
                    if not self.domain_warning_raised:
                        self.domain_warning_raised = True
                        self.logger.warning("Insufficient grid points over land in selected domain to estimate storm statistics - reverting to statistics for open ocean.")
                    return self.extractParameter(cellNum, False)
                else:
                    errMsg = "Insufficient grid points in selected domain to estimate storm statistics - please select a larger domain."
                    self.logger.critical(errMsg)
                    raise StopIteration, errMsg
            if onLand:
                ij = np.where(((lat >= sLat) & (lat < nLat)) &
                           (lon >= wLon) & (lon < eLon) & (lsflag>0))
            else:
                ij = np.where(((lat >= sLat) & (lat < nLat)) &
                           (lon >= wLon) & (lon < eLon) & (lsflag==0))

            p_ = self.param[ij]
            p = stats.statRemoveNum(np.array(p_), self.missingValue)
        return p
Exemple #6
0
    def extractParameter(self, cellNum, onLand):
        """
        Extracts the cyclone parameter data for the given cell.
        If the population of a cell is insufficient for generating a
        PDF, the bounds of the cell are expanded until the population is
        sufficient.

        Null/missing values are removed.

        :param int cellNum: The cell number to process.
        :returns: None. The :attr:`parameter` attribute is updated.
        :raises IndexError: if the cell number is not valid
                            (i.e. if it is outside the possible
                            range of cell numbers).

        """

        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            self.logger.critical(
                "Invalid input on cellNum: cell number %i is out of range" %
                cellNum)
            raise IndexError, 'Invalid input on cellNum: cell number %i is out of range' % cellNum
        cellLon, cellLat = stats.getCellLonLat(cellNum, self.gridLimit,
                                               self.gridSpace)
        wLon = cellLon
        eLon = cellLon + self.gridSpace['x']
        nLat = cellLat
        sLat = cellLat - self.gridSpace['y']

        lon = self.lonLat[:, 0]
        lat = self.lonLat[:, 1]
        lsflag = self.lonLat[:, 2]

        if onLand:
            ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                          & (lon < eLon) & (lsflag > 0))
        else:
            ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                          & (lon < eLon) & (lsflag == 0))

        p_ = self.param[ij]
        p = stats.statRemoveNum(np.array(p_), self.missingValue)

        while np.size(p) <= self.minSample:
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            # Check if grid has reached maximum extent
            if (wLon == wLon_last) & (eLon == eLon_last) & (
                    nLat == nLat_last) & (sLat == sLat_last):
                if onLand:
                    if not self.domain_warning_raised:
                        self.domain_warning_raised = True
                        self.logger.warning(
                            "Insufficient grid points over land in selected domain to estimate storm statistics - reverting to statistics for open ocean."
                        )
                    return self.extractParameter(cellNum, False)
                else:
                    errMsg = ("Insufficient grid points in selected "
                              "domain to estimate storm statistics - "
                              "please select a larger domain.")
                    self.logger.critical(errMsg)
                    raise StopIteration, errMsg

            if onLand:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                              & (lon < eLon) & (lsflag > 0))
            else:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                              & (lon < eLon) & (lsflag == 0))
            p_ = self.param[ij]
            p = stats.statRemoveNum(np.array(p_), self.missingValue)

        # Check to see if all values in the np.array are the same. If the values
        # are the same, bandwidth would be 0, and therefore KDE cannot be generated
        while p.max() == p.min():
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            # Check if grid has reached maximum extent
            if (wLon == wLon_last) & (eLon == eLon_last) & (
                    nLat == nLat_last) & (sLat == sLat_last):
                if onLand:
                    if not self.domain_warning_raised:
                        self.domain_warning_raised = True
                        self.logger.warning(
                            "Insufficient grid points over land in selected domain to estimate storm statistics - reverting to statistics for open ocean."
                        )
                    return self.extractParameter(cellNum, False)
                else:
                    errMsg = "Insufficient grid points in selected domain to estimate storm statistics - please select a larger domain."
                    self.logger.critical(errMsg)
                    raise StopIteration, errMsg
            if onLand:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                              & (lon < eLon) & (lsflag > 0))
            else:
                ij = np.where(((lat >= sLat) & (lat < nLat)) & (lon >= wLon)
                              & (lon < eLon) & (lsflag == 0))

            p_ = self.param[ij]
            p = stats.statRemoveNum(np.array(p_), self.missingValue)
        return p
Exemple #7
0
 def test_ValidCellNum(self):
     """Testing validCellNum"""
     knownValues = ((-10, False), (0, True), (100, True), (175, True), (176, False), (2000, False))
     for cell, valid in knownValues:
         result = statutils.validCellNum(cell, self.gridLimit, self.gridSpace)
         self.assertEqual(result, valid)
Exemple #8
0
    def extractParameter(self, cellNum):
        """
        Extracts the cyclone parameter data for the given cell.
        If the population of a cell is insufficient for generating a
        PDF, the bounds of the cell are expanded until the population is
        sufficient.

        Null/missing values are removed.

        :param int cellNum: The cell number to process.
        :returns: None. The :attr:`parameter` attribute is updated.
        :raises IndexError: if the cell number is not valid
                            (i.e. if it is outside the possible
                            range of cell numbers).
        """
        if not stats.validCellNum(cellNum, self.gridLimit, self.gridSpace):
            self.logger.critical(("Invalid input on cellNum: "
                                  "cell number %i is out of range")%cellNum)
            raise IndexError('Invalid input on cellNum: '
                               'cell number is out of range')
        lon = self.lonLat[:, 0]
        lat = self.lonLat[:, 1]
        cellLon, cellLat = stats.getCellLonLat(cellNum, self.gridLimit,
                                               self.gridSpace)

        wLon = cellLon
        eLon = cellLon + self.gridSpace['x']
        nLat = cellLat
        sLat = cellLat - self.gridSpace['y']

        indij = np.where(((lat >= sLat) & (lat < nLat)) &
                         ((lon >= wLon) & (lon < eLon)))
        parameter_ = self.pList[indij]
        self.parameter = stats.statRemoveNum(np.array(parameter_),
                                             self.missingValue)

        while np.size(self.parameter) <= self.minSamplesCell:
            self.logger.debug(("Insufficient samples. Increasing the "
                               "size of the cell"))
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon, eLon,
                                                      nLat, sLat)
            if ((wLon == wLon_last) & (eLon == eLon_last) &
                    (nLat == nLat_last) & (sLat == sLat_last)):
                errMsg = ("Insufficient grid points in selected domain to "
                          "estimate storm statistics - please select a larger "
                          "domain. Samples = %i / %i")%(np.size(self.parameter),
                                                        self.minSamplesCell)
                self.logger.critical(errMsg)
                raise StopIteration(errMsg)
            indij = np.where(((lat >= sLat) & (lat < nLat)) &
                             ((lon >= wLon) & (lon < eLon)))
            parameter_ = self.pList[indij]
            self.parameter = stats.statRemoveNum(np.array(parameter_),
                                                 self.missingValue)

        # Check to see if all values in the array are the same. If the
        # values are the same, bandwidth would be 0, and therefore KDE
        # cannot proceed
        while self.parameter.max() == self.parameter.min():
            self.logger.debug(("Parameter values appear to be the same. "
                               "Increasing the size of the cell"))
            wLon_last = wLon
            eLon_last = eLon
            nLat_last = nLat
            sLat_last = sLat
            wLon, eLon, nLat, sLat = self._expandCell(lon, lat, wLon,
                                                      eLon, nLat, sLat)
            if ((wLon == wLon_last) & (eLon == eLon_last) &
                    (nLat == nLat_last) & (sLat == sLat_last)):
                errMsg = ("Insufficient grid points in selected domain "
                          "to estimate storm statistics - "
                          "please select a larger domain.")
                self.logger.critical(errMsg)
                raise StopIteration(errMsg)
            indij = np.where(((lat >= sLat) & (lat < nLat)) &
                             ((lon >= wLon) & (lon < eLon)))
            parameter_ = self.pList[indij]
            self.parameter = stats.statRemoveNum(np.array(parameter_),
                                                 self.missingValue)
        self.logger.debug("Number of valid observations in cell %s : %s",
                          str(cellNum), str(np.size(self.parameter)))