Exemple #1
0
def api_learn_add_del_route(op):
    if not op in allowed_endpoints:
        abort(404)
    session['username'] = database.get_username(request.form['interface'],
                                                request.form['username'])
    if session['username'] == None:
        abort(403)

    session['logged_in'] = True
    print '@@@@@@@@', session['username']

    options = {}
    if not op == 'query':
        options = generic_learn_route(
            op, request.form,
            request.files['file'] if 'file' in request.files else None)
    else:
        try:
            # Retrieve knowledge.
            if 'type' in request.form and request.form['type'] == 'text':
                options['text'] = database.get_text(session['username'])
            elif 'type' in request.form and request.form['type'] == 'image':
                options['pictures'] = database.get_images(session['username'])
            else:
                options['pictures'] = database.get_images(session['username'])
                options['text'] = database.get_text(session['username'])
        except Exception as e:
            log(e)
            options['errno'] = 500
            options['error'] = str(e)
    if 'errno' in options:
        return json.dumps(options), options['errno']
    return json.dumps(options), 200
Exemple #2
0
def prepare_delta_E_sums(shifted_energies, temperatures, _accuracy, options):
  """
  Prepares the sum of the second part of the Z_c_m equation
  
  """
    
  energies_cnt = len(shifted_energies)
  temp_cnt = len(temperatures)
  
  delta_E_sums = np.empty([energies_cnt, temp_cnt], dtype=_accuracy)
    
  log(__name__, "Preparing delta_E_sums to speed up the calculations", options.verbose, indent=3)
  
  for t_i in range(temp_cnt):
    temperature = temperatures[t_i]
    
    kT = _accuracy(Constants.kB * temperature)
    
    for e_i in range(energies_cnt):
      
      case_energies = shifted_energies[e_i]
      cnt_case_energies = len(case_energies)
      
      sum_Ediff = _accuracy(0.0)
      
      # summing in the reverse order in order to account for small values
      for i in reversed(range(cnt_case_energies)): 
        sum_Ediff += _accuracy(math.exp(-1.0*(case_energies[i]) / (kT)))

      delta_E_sums[e_i][t_i] = sum_Ediff
    
  return delta_E_sums
Exemple #3
0
def prepare_energies(input_data_array, _accuracy, options):
  """
  Prepares energy arrays for the calculations
  
  """
  
  log(__name__, "Preparing the energies", options.verbose, indent=3)
  
  cases_cnt = input_data_array.shape[0]
  
  min_energies = np.empty(cases_cnt, dtype=_accuracy)
  energies = []
  shifted_energies = []
  experiment_cnts = np.empty(cases_cnt, dtype=_accuracy)
  
  for i in range(cases_cnt):
    # removes all zero values from the beginning and end of the array
    case_energies = np.trim_zeros(copy.deepcopy(input_data_array[i]))
    energies.append(case_energies)
    
    # it might be the first value but it might not be, thus we getting the minimum
    min_energies[i] = _accuracy(np.min(case_energies))
    
    diff_energy = case_energies - min_energies[i]
    shifted_energies.append(diff_energy)
    
    # saving the number of experiments of the stoichiometry
    experiment_cnts[i] = len(case_energies)
  
  return energies, min_energies, shifted_energies, experiment_cnts
Exemple #4
0
def prepare_parameters(options):
  """
  Prepares analysis parameters: temperature and mu
  
  """
  
  success = True
  error = ""
  temperatures = None
  chem_pot_range = None
  
  # reading in the temperatures
  success, error, temperatures = Utilities.get_list_of_temps(options.temps)
  
  if not success:
    return success, error
  
  # reading in the chemical potential
  if options.urange is not None:
    success, error, chem_pot_range = Utilities.get_chem_pot_range(options.urange)
    
    if not success:
      return success, error
          
  log(__name__, "Analysis will be performed at (K): %s" % (options.temps), options.verbose, indent=2)
  
  if chem_pot_range is not None:
    log(__name__, "mu parameter: %s" % (options.urange), options.verbose, indent=2)
  
  return success, error, temperatures, chem_pot_range
Exemple #5
0
def api_learn_add_del_route(op):
	if not op in allowed_endpoints:
		abort(404)
        session['username'] = database.get_username(request.form['interface'], request.form['username'])
        if session['username'] == None:
                abort (403)

        session['logged_in'] = True
        print '@@@@@@@@', session['username']

	options = {}
	if not op == 'query':
		options = generic_learn_route(op, request.form, request.files['file'] if 'file' in request.files else None)
	else:
		try:
			# Retrieve knowledge.
			if 'type' in request.form and request.form['type'] == 'text':
				options['text'] = database.get_text(session['username'])
			elif 'type' in request.form and request.form['type'] == 'image':
				options['pictures'] = database.get_images(session['username'])
			else:
				options['pictures'] = database.get_images(session['username'])
				options['text'] = database.get_text(session['username'])
		except Exception as e:
			log(e)
			options['errno'] = 500
			options['error'] = str(e)
	if 'errno' in options:
		return json.dumps(options), options['errno']
	return json.dumps(options), 200
Exemple #6
0
 def get_images(self, username):
     log('Retrieving all images from images_' + username)
     # Notice image['data'] was encoded using Base64.
     return [
         image for image in self.get_image_collection(username).find(
             {}, {'_id': 0})
     ]
Exemple #7
0
	def infer(self, LUCID, service_graph, text_data, image_data):
		# Create the list of QueryInput.
		query_input_list = []
		for node in service_graph.node_list:
			service = self.SERVICES[node.service_name]
			data = text_data if service.input_type == 'text' else image_data
			host, port = service.get_host_port()
			tag_list = [host, str(port), str(len(node.to_indices))]
			for to_index in node.to_indices:
				tag_list.append(str(to_index))
			query_input_list.append(self.create_query_input(
				service.input_type, data, tag_list))
		query_spec = self.create_query_spec('query', query_input_list)
		# Go through all starting indices and send requests.
		result = []
		for start_index in service_graph.starting_indices:
			service = self.SERVICES[service_graph.get_node(
				start_index).service_name]
			client, transport = self.get_client_transport(service)
			log('Sending infer request to ' + service.name)
			request = Request()
			request.LUCID = str(LUCID)
			request.spec = query_spec
			result.append(client.infer(Request).msg)
			#transport.close()
		return ' '.join(result)
Exemple #8
0
 def send_query(self, LUCID, service_name, query_input_list):
     query_spec = self.create_query_spec('query', query_input_list)
     service = self.SERVICES[service_name]
     client, transport = self.get_client_transport(service)
     log('Sending infer request to ' + service.name)
     result = client.infer(str(LUCID), query_spec)
     transport.close()
     return result
Exemple #9
0
	def __init__(self):
		memcached_addr = os.environ.get('MEMCACHED_PORT_11211_TCP_ADDR')
		if memcached_addr:
			log('Memcached: ' + memcached_addr)
			self.client = Client([(memcached_addr, 11211)])
		else:
			log('Memcached: localhost')
			self.client = Client([('127.0.0.1', 11211)])
Exemple #10
0
 def send_query(self, LUCID, service_name, query_input_list):
     query_spec = self.create_query_spec('query', query_input_list)
     service = self.SERVICES[service_name]
     client, transport = self.get_client_transport(service)
     log('Sending infer request to ' + service.name)
     result = client.infer(str(LUCID), query_spec)
     transport.close()
     return result
Exemple #11
0
 def __init__(self):
     memcached_addr = os.environ.get('MEMCACHED_PORT_11211_TCP_ADDR')
     if memcached_addr:
         log('Memcached: ' + memcached_addr)
         self.client = Client([(memcached_addr, 11211)])
     else:
         log('Memcached: localhost')
         self.client = Client([('127.0.0.1', 11211)])
Exemple #12
0
	def __init__(self):
		mongodb_addr = os.environ.get('MONGO_PORT_27017_TCP_ADDR')
		if mongodb_addr:
			log('MongoDB: ' + mongodb_addr)
			self.db = MongoClient(mongodb_addr, 27017).lucida
		else:
			log('MongoDB: localhost')
			self.db = MongoClient().lucida
		self.users = self.db.users
Exemple #13
0
	def learn_image(self, LUCID, image_type, image_data, label):
		for service in Config.Service.LEARNERS['image']: # add concurrency?
			knowledge_input = self.create_query_input(
				image_type, image_data, [label])
			client, transport = self.get_client_transport(service)
			log('Sending learn_image request to IMM')
			client.learn(str(LUCID), 
				self.create_query_spec('knowledge', [knowledge_input]))
			transport.close()
Exemple #14
0
	def learn_text(self, LUCID, text_type, text_data, text_id):
		for service in Config.Service.LEARNERS['text']: # add concurrency?
			knowledge_input = self.create_query_input(
				text_type, text_data, [text_id])
			client, transport = self.get_client_transport(service)
			log('Sending learn_text request to QA')
			client.learn(str(LUCID), 
				self.create_query_spec('knowledge', [knowledge_input]))
			transport.close()
Exemple #15
0
	def __init__(self):
		if os.environ.get('MONGO_PORT_27017_TCP_ADDR'):
			log('MongoDB: ' + os.environ.get('MONGO_PORT_27017_TCP_ADDR'))
			self.db = MongoClient(os.environ.get('MONGO_PORT_27017_TCP_ADDR'),
				27017).lucida
		else:
			log('MongoDB: localhost')
			self.db = MongoClient().lucida
		self.users = self.db.users
Exemple #16
0
 def __init__(self):
     mongodb_addr = os.environ.get('MONGO_PORT_27017_TCP_ADDR')
     if mongodb_addr:
         log('MongoDB: ' + mongodb_addr)
         self.db = MongoClient(mongodb_addr, 27017).lucida
     else:
         log('MongoDB: localhost')
         self.db = MongoClient().lucida
     self.users = self.db.users
Exemple #17
0
def infer_route():
    options = {}
    if os.environ.get('ASR_ADDR_PORT'):
        options['asr_addr_port'] = os.environ.get('ASR_ADDR_PORT')
    else:
        options['asr_addr_port'] = 'ws://*****:*****@@@@@@@@@@', speech_input
                image_input = [upload_file.read()] if upload_file else None
                lucida_id = session['username']
                # Check if context is saved for Lucida user
                # If not, classify query, otherwise restore session
                if lucida_id not in Config.SESSION:
                    services_needed = \
                        query_classifier.predict(speech_input, upload_file)
                    speech_input = [speech_input]
                else:
                    services_needed = Config.SESSION[lucida_id]['graph']
                    Config.SESSION[lucida_id]['data']['text'].append(
                        speech_input)
                    speech_input = Config.SESSION[lucida_id]['data']['text']
                options['result'] = thrift_client.infer(lucida_id, \
                    services_needed, speech_input, image_input)
                log('Result ' + options['result'])
                # Check if Calendar service is needed.
                # If so, JavaScript needs to receive the parsed dates.
                if services_needed.has_service('CA'):
                    options['dates'] = options['result']
                    options['result'] = None
                    return render_template('infer.html', **options)
            else:
                raise RuntimeError('Did you click the Ask button?')
    except Exception as e:
        log(e)
        if str(e) == 'TSocket read 0 bytes':
            e = 'Back-end service encountered a problem'
        options['error'] = e
        return render_template('infer.html', **options)
    # Display.
    return render_template('infer.html', **options)
Exemple #18
0
 def get_host_port(self):
     try:
         host = 'localhost'
         tcp_addr = os.environ.get(self.name + '_PORT_' + str(self.port) + '_TCP_ADDR')
         if tcp_addr:
             log('TCP address is resolved to ' + tcp_addr)
             host = tcp_addr
         return host, self.port
     except Exception:
         raise RuntimeError('Cannot access service ' + self.name)
Exemple #19
0
 def learn_image(self, LUCID, image_type, image_data, image_id):
     for service in Config.Service.LEARNERS['image']:  # add concurrency?
         knowledge_input = self.create_query_input(image_type, image_data,
                                                   [image_id])
         client, transport = self.get_client_transport(service)
         log('Sending learn_image request to IMM')
         client.learn(
             str(LUCID),
             self.create_query_spec('knowledge', [knowledge_input]))
         transport.close()
Exemple #20
0
 def learn_text(self, LUCID, text_type, text_data, text_id):
     for service in Config.Service.LEARNERS['text']:  # add concurrency?
         knowledge_input = self.create_query_input(text_type, text_data,
                                                   [text_id])
         client, transport = self.get_client_transport(service)
         log('Sending learn_text request to QA')
         client.learn(
             str(LUCID),
             self.create_query_spec('knowledge', [knowledge_input]))
         transport.close()
def generic_infer_route(form, upload_file):
    options = {}
    if os.environ.get('ASR_ADDR_PORT'):
        options['asr_addr_port'] = os.environ.get('ASR_ADDR_PORT')
    else:
        options['asr_addr_port'] = 'ws://localhost:' + port_dic["cmd_port"]
    try:
        # Deal with POST requests.
        if request.method == 'POST':
            if not upload_file is None and upload_file.filename != '':
                check_image_extension(upload_file)
            # Classify the query.
            speech_input = form['speech_input'] if 'speech_input' in form \
             else ''
            print 'Query: ', speech_input
            image_input = [upload_file.read()] if upload_file else None
            lucida_id = session['username']
            # Check if context is saved for Lucida user
            # If not, classify query, otherwise restore session
            if lucida_id not in Config.SESSION:
                services_needed = query_classifier.predict(
                    speech_input, upload_file)
                speech_input = [speech_input]
            else:
                services_needed = Config.SESSION[lucida_id]['graph']
                Config.SESSION[lucida_id]['data']['text'].append(speech_input)
                speech_input = Config.SESSION[lucida_id]['data']['text']
            node = services_needed.get_node(0)
            try:
                options['result'] = thrift_client.infer(
                    lucida_id, node.service_name, speech_input, image_input)
            except Exception as ex:
                print "Exception raised while trying to infer", ex.message
                options['error'] = str(ex)
                raise
            if 'result' in options:
                log('Result ' + options['result'])
                # Check if Calendar service is needed.
                # If so, JavaScript needs to receive the parsed dates.
                if services_needed.has_service('CAWF'):
                    options['dates'] = options['result']
                    options['result'] = None
            else:
                options['error'] = "Result was empty."
    except Exception as e:
        log(e)
        options['errno'] = "Unknown"
        options['error'] = str(e.message)
        if 'code' in e and re.match("^4\d\d$", str(e.code)):
            options['errno'] = e.code
        if str(e) == 'TSocket read 0 bytes':
            options['error'] = 'Back-end service encountered a problem'
        if str(e).startswith('Could not connect to'):
            options['error'] = 'Back-end service is not running'
    return options
Exemple #22
0
def calc_average_value(temperatures,
                       chem_pot_range,
                       prop_array,
                       prop_name,
                       Wm_array,
                       _accuracy,
                       options,
                       temp_depend=False):
    """
  Calculates average value of a system's property
  
  """

    success = True
    error = ""

    log(__name__,
        "Calculating an average value of: %s" % (prop_name),
        options.verbose,
        indent=3)

    temp_len = len(temperatures)
    chem_pot_len = len(chem_pot_range)

    # is the value temperature dependent
    if not temp_depend:
        prop_len = len(prop_array)
    else:
        prop_len = len(prop_array[0])

    avg_array = np.zeros([temp_len, chem_pot_len], _accuracy)

    # for each temperature:
    for t_index in range(temp_len):
        temperature = temperatures[t_index]

        for mu_index in range(chem_pot_len):

            prop_avg = _accuracy(0.0)

            for prop_index in range(prop_len):
                wm_value = Wm_array[t_index, mu_index, prop_index]

                # is the value temperature dependent
                if not temp_depend:
                    prop_value = prop_array[prop_index]
                else:
                    prop_value = prop_array[t_index][prop_index]

                prop_avg += wm_value * prop_value

            avg_array[t_index, mu_index] = prop_avg

    return success, error, avg_array
 def get_host_port(self):
     try:
         host = 'localhost'  # TODO - Need to replace with a dynamic service finding system - good candidate is to finish the full CREATE system
         tcp_addr = os.environ.get(self.name + '_PORT_' + str(self.port) +
                                   '_TCP_ADDR')
         if tcp_addr:
             log('TCP address is resolved to ' + tcp_addr)
             host = tcp_addr
         return host, self.port
     except Exception:
         raise RuntimeError('Cannot access service ' + self.name)
Exemple #24
0
	def get_host_port(self):
		try:
			host = 'localhost'
			tcp_addr = os.environ.get(
				self.name + '_PORT_' + str(self.port) + '_TCP_ADDR')
			if tcp_addr:
				log('TCP address is resolved to ' + tcp_addr)
				host = tcp_addr
			return host, self.port
		except Exception:
			raise RuntimeError('Cannot access service ' + self.name)		
			
			
Exemple #25
0
def distribution_analysis(chem_pot_multi, names, temperatures, chem_pot_range,
                          min_energies, delta_E_sums, experiment_cnts,
                          permutations, omega_c_arr, _accuracy, options):
    """
  Performs the distribution analysis: evaluates Wm and plots it against m and mu.
  
  """

    log(__name__, "Distribution analysis", options.verbose, indent=2)

    success = True
    error = ""

    # Preparing Wm probabilities
    Wm_array = prepare_Wm(chem_pot_multi, temperatures, chem_pot_range,
                          min_energies, delta_E_sums, experiment_cnts,
                          permutations, _accuracy, options)

    # Writing Wm into a file
    success, error = IO.write_Wm(temperatures, chem_pot_range, chem_pot_multi,
                                 Wm_array)

    if not success:
        return success, error, Wm_array

    # Plotting the Wm probabilities 3D plots
    Graphs.wm_contour(temperatures, names, chem_pot_range, chem_pot_multi,
                      Wm_array, _accuracy, options)

    # Performing analysis with respect to the distribution function (average m is the standard analysis)
    # average m
    average_analysis(temperatures,
                     chem_pot_range,
                     chem_pot_multi,
                     "m",
                     Wm_array,
                     _accuracy,
                     options,
                     temp_depend=False)

    # average gamma
    average_analysis(temperatures,
                     chem_pot_range,
                     omega_c_arr,
                     "\gamma^{c}",
                     Wm_array,
                     _accuracy,
                     options,
                     temp_depend=True)

    return success, error, Wm_array
Exemple #26
0
def learn_route():
	options = {}
	# Deal with POST requests.
	if request.method == 'POST':
		options = generic_learn_route(request.form['op'], request.form, request.files['file'] if 'file' in request.files else None)
	try:
		# Retrieve knowledge.
		options['pictures'] = database.get_images(session['username'])
		options['text'] = database.get_text(session['username'])
	except Exception as e:
		log(e)
		options['errno'] = 500
		options['error'] = str(e)
	return render_template('learn.html', **options)
Exemple #27
0
def prepare_data(data, temperatures, _accuracy, options):
  """
  Prepares the data for further analysis: energy difference with respect to corresponding lowest energy, Zcm sums
  
  """
  
  # first of all lets prepare the data for the calculations.
  log(__name__, "Preparing the data", options.verbose, indent=2)
  
  energies, min_energies, shifted_energies, experiment_cnts = prepare_energies(data, _accuracy, options)
    
  delta_E_sums = prepare_delta_E_sums(shifted_energies, temperatures, _accuracy, options)
  
  return energies, min_energies, shifted_energies, experiment_cnts, delta_E_sums
Exemple #28
0
    def _sendFinishedSignal(self, dest):
        """
    Sends a signal to the server that it is finished its job
    
    """

        log(__name__,
            "Worker %000d | sending a FINISHED response" % (self.rank), 1)

        dataPackage = {
            Config._MPIRankTag: self.rank,
            Config._MPISignalDataTag: Config._MPISignalFinished
        }

        self.comm.send(dataPackage, dest=dest, tag=Config._MPITagClient)
Exemple #29
0
    def _sendReadyForDataSignal(self, dest):
        """
    Sends a signal to the server that it is ready to receive data
    
    """

        log(__name__,
            "Worker %000d | sending a READY 4 DATA response" % (self.rank), 1)

        dataPackage = {
            Config._MPIRankTag: self.rank,
            Config._MPISignalDataTag: Config._MPISignalReady4Data
        }

        self.comm.send(dataPackage, dest=dest, tag=Config._MPITagClient)
Exemple #30
0
 def load(self, input_type, query_classes):
     current_dir = os.path.abspath(os.path.dirname(__file__))
     # If there is no or only one possible outcomes for the input type,
     # there is no need to train any classifier.
     if len(query_classes) <= 1:
         return DummyClassifier(query_classes.keys()[0])
     try:
         with open(
                 current_dir + '/../models/dumped_classifier_' +
                 input_type + '.pkl', 'rb') as fid:
             log('Loading model for ' + input_type)
             return cPickle.load(fid)
     except IOError as e:
         print e
         exit(1)
	def load(self, input_type, query_classes):
		current_dir = os.path.abspath(os.path.dirname(__file__))
		# If there is no or only one possible outcomes for the input type, 
		# there is no need to train any classifier.
		if len(query_classes) <= 1:
			return DummyClassifier(query_classes.keys()[0])
		try:
			with open(current_dir +
				'/../models/dumped_classifier_' + input_type + '.pkl',
				'rb') as fid:
				log('Loading model for ' + input_type)
				return cPickle.load(fid)
		except IOError as e:
			print e
			exit(1)
Exemple #32
0
def learn_route():
    options = {}
    # Deal with POST requests.
    if request.method == 'POST':
        options = generic_learn_route(
            request.form['op'], request.form,
            request.files['file'] if 'file' in request.files else None)
    try:
        # Retrieve knowledge.
        options['pictures'] = database.get_images(session['username'])
        options['text'] = database.get_text(session['username'])
    except Exception as e:
        log(e)
        options['errno'] = 500
        options['error'] = str(e)
    return render_template('learn.html', **options)
def g_c_calc_omega(chem_pot_multi, temperatures, chem_pot_range, min_energies, delta_E_sums, experiment_cnts, 
                   permutations, _accuracy, options):
  """
  Calculates omega values with respect to temperature and chemical potential (grand canonical analysis)
  
  """
    
  success = True
  error = ""
  
  log(__name__, "Calculating Omega (grand canonical)", options.verbose, indent=3)
  
  temp_len = len(temperatures)
  chem_pot_len = len(chem_pot_range)
  chem_pot_multi_len = len(chem_pot_multi)
  
  global_min_energy = np.min(min_energies)
  
  omega_arr = np.zeros([temp_len, chem_pot_len], _accuracy)
  
  # for each temperature:
  for t_index in range(temp_len):
    temperature = temperatures[t_index]
    
    kT = np.longdouble(Constants.kB * temperature)
    
    # for each chemical potential value
    for mu_index in range(chem_pot_len):
      mu_value = chem_pot_range[mu_index]
      
      sum2 = _accuracy(0.0)
      
      # for each composition
      for m_index in range(chem_pot_multi_len):
        m_value = chem_pot_multi[m_index]
        
        min_energy = min_energies[m_index]
        
        exp_expr = _accuracy(-1.0*(min_energy - global_min_energy + m_value*mu_value) / (kT))
        
        sum2 += np.exp(exp_expr) * (permutations[m_index]/experiment_cnts[m_index]) * delta_E_sums[m_index][t_index]
            
      omega_value = -kT * (-global_min_energy + np.log(sum2))
              
      omega_arr[t_index, mu_index] = omega_value
  
  return success, error, omega_arr
Exemple #34
0
    def _sendFailedSignal(self, dest, failedMessage):
        """
    Sends a signal to the server that the job has failed
    
    """

        log(
            __name__, "Worker %000d | sending a FAILURE response: %s" %
            (self.rank, failedMessage), 1)

        dataPackage = {
            Config._MPIRankTag: self.rank,
            Config._MPISignalDataTag: Config._MPISignalFailed,
            Config._MPIMessageTag: failedMessage
        }

        self.comm.send(dataPackage, dest=dest, tag=Config._MPITagClient)
Exemple #35
0
 def predict(self, speech_input, image_input):
     input_type = ''
     if speech_input:
         if image_input:
             input_type = 'text_image'
         else:
             input_type = 'text'
     else:
         if image_input:
             input_type = 'image'
         else:
             raise RuntimeError('Text and image cannot be both empty')
     # Convert speech_input to a single-element list.
     class_predicted = self.classifiers[input_type].predict([speech_input])
     class_predicted = class_predicted[0]  # ndarray to string
     log('Query classified as ' + class_predicted)
     return self.CLASSIFIER_DESCRIPTIONS[input_type][class_predicted]
	def predict(self, speech_input, image_input):
		input_type = ''
		if speech_input:
			if image_input:
				input_type = 'text_image'
			else:
				input_type = 'text'
		else:
			if image_input:
				input_type = 'image'
			else:
				raise RuntimeError('Text and image cannot be both empty')      
		# Convert speech_input to a single-element list.
		class_predicted = self.classifiers[input_type].predict([speech_input])
		class_predicted = class_predicted[0] # ndarray to string
		log('Query classified as ' + class_predicted)
		return self.CLASSIFIER_DESCRIPTIONS[input_type][class_predicted]
Exemple #37
0
def generic_infer_route(form, upload_file):
	options = {}
	if os.environ.get('ASR_ADDR_PORT'):
		options['asr_addr_port'] = os.environ.get('ASR_ADDR_PORT')
	else:
		options['asr_addr_port'] = 'ws://*****:*****@@@@@@@@@@', speech_input
			image_input = [upload_file.read()] if upload_file else None
			lucida_id = session['username']
			# Check if context is saved for Lucida user
			# If not, classify query, otherwise restore session
			if lucida_id not in Config.SESSION:
				services_needed = query_classifier.predict(speech_input, upload_file)
				speech_input = [speech_input]
			else:
				services_needed = Config.SESSION[lucida_id]['graph']
				Config.SESSION[lucida_id]['data']['text'].append(speech_input)
				speech_input = Config.SESSION[lucida_id]['data']['text']
			node = services_needed.get_node(0)
			options['result'] = thrift_client.infer(lucida_id, node.service_name, speech_input, image_input)
			log('Result ' + options['result'])
			# Check if Calendar service is needed.
			# If so, JavaScript needs to receive the parsed dates.
			if services_needed.has_service('CA'):
				options['dates'] = options['result']
				options['result'] = None
	except Exception as e:
                log(e)
                options['errno'] = 500
                options['error'] = str(e)
                if 'code' in e and re.match("^4\d\d$", str(e.code)):
                        options['errno'] = e.code
                if str(e) == 'TSocket read 0 bytes':
                        options['error'] = 'Back-end service encountered a problem'
                if str(e).startswith('Could not connect to'):
                        options['error'] = 'Back-end service is not running'
	return options
Exemple #38
0
    def _sendStopSignal(self, dest):
        """
    Sends a signal to the server that it is stopping
    
    """

        log(__name__, "Worker %000d | received a STOP signal" % (self.rank), 1)

        log(__name__, "Worker %000d | sending a QUIT response" % (self.rank),
            1)

        # sending QUIT message to the server
        dataPackage = {
            Config._MPIRankTag: self.rank,
            Config._MPISignalDataTag: Config._MPISignalQuit
        }

        self.comm.send(dataPackage, dest=dest, tag=Config._MPITagClient)
	def __init__(self, TRAIN_OR_LOAD, CLASSIFIER_DESCRIPTIONS_IN):
		self.CLASSIFIER_DESCRIPTIONS = CLASSIFIER_DESCRIPTIONS_IN
		self.classifiers = {}
		# Each input type has its own classifier.
		for input_type in self.CLASSIFIER_DESCRIPTIONS:
			# query_classes represents all the possible classification outcomes 
			# and their needed services for a given input type.
			if TRAIN_OR_LOAD == 'train':
				self.classifiers[input_type] = self.train(input_type,
					self.CLASSIFIER_DESCRIPTIONS[input_type])
			elif TRAIN_OR_LOAD == 'load':
				self.classifiers[input_type] = self.load(input_type,
					self.CLASSIFIER_DESCRIPTIONS[input_type])
			else:
				raise RuntimeError(
					'TRAIN_OR_LOAD must be either "train" or "load"')
		log('@@@@@ Summary of classifiers:')
		log(str(self.classifiers))
Exemple #40
0
 def __init__(self, TRAIN_OR_LOAD, CLASSIFIER_DESCRIPTIONS_IN):
     self.CLASSIFIER_DESCRIPTIONS = CLASSIFIER_DESCRIPTIONS_IN
     self.classifiers = {}
     # Each input type has its own classifier.
     for input_type in self.CLASSIFIER_DESCRIPTIONS:
         # query_classes represents all the possible classification outcomes
         # and their needed services for a given input type.
         if TRAIN_OR_LOAD == 'train':
             self.classifiers[input_type] = self.train(
                 input_type, self.CLASSIFIER_DESCRIPTIONS[input_type])
         elif TRAIN_OR_LOAD == 'load':
             self.classifiers[input_type] = self.load(
                 input_type, self.CLASSIFIER_DESCRIPTIONS[input_type])
         else:
             raise RuntimeError(
                 'TRAIN_OR_LOAD must be either "train" or "load"')
     log('@@@@@ Summary of classifiers:')
     log(str(self.classifiers))
def c_calc_gamma(temperatures, min_energies, delta_E_sums, experiment_cnts, permutations, _accuracy, options):
  """
  Calculates omega values with respect to temperature (canonical analysis)
  
  """
  
  success = True
  error = ""
  
  log(__name__, "Calculating Omega (canonical)", options.verbose, indent=3)
  
  temp_len = len(temperatures)
  comp_len = len(min_energies)
  
  omega_arr = np.zeros([temp_len, comp_len], _accuracy)
  
  # for each temperature:
  for t_index in range(temp_len):
    temperature = temperatures[t_index]
    
    kT = np.longdouble(Constants.kB * temperature)
    # for each composition
    
    for c_index in range(comp_len):
      # calculating Z^c_m
      
      # Pm
      if options.permCalc:
        Pm = _accuracy(calc_permutation(m_value, mm_value, _accuracy))
      else:
        Pm = _accuracy(permutations[c_index])         
      
      # Nm
      Nm = experiment_cnts[c_index]
            
      #Z_cm = np.exp(-1.0*(min_energies[c_index]) / kT) * (Pm/Nm) * delta_E_sums[c_index][t_index]
      #omega_value = - kT * np.log(Z_cm)
      
      omega_value = - kT * (-1.0*(min_energies[c_index]) / kT + np.log((Pm/Nm)) + np.log(delta_E_sums[c_index][t_index]))
      
      omega_arr[t_index, c_index] = omega_value / Constants.gamma_c_m_coef
      
  return success, error, omega_arr
Exemple #42
0
def infer_route():
    options = {}
    if os.environ.get('ASR_ADDR_PORT'):
        options['asr_addr_port'] = os.environ.get('ASR_ADDR_PORT')
    else:
        options['asr_addr_port'] = 'ws://*****:*****@@@@@@@@@@', form['speech_input']
                # Classify the query.
                services_needed = \
                 query_classifier.predict(form['speech_input'], upload_file)
                options['result'] = thrift_client.infer(
                    session['username'], services_needed, form['speech_input'],
                    upload_file.read())
                log('Result ' + options['result'])
                # Check if Calendar service is needed.
                # If so, JavaScript needs to receive the parsed dates.
                if services_needed.has_service('CA'):
                    options['dates'] = options['result']
                    options['result'] = None
                    return render_template('infer.html', **options)
            else:
                raise RuntimeError('Did you click the Ask button?')
    except Exception as e:
        log(e)
        if str(e) == 'TSocket read 0 bytes':
            e = 'Back-end service encountered a problem'
        options['error'] = e
        return render_template('infer.html', **options)
    # Display.
    return render_template('infer.html', **options)
Exemple #43
0
def infer_route():
    options = {}
    if os.environ.get("ASR_ADDR_PORT"):
        options["asr_addr_port"] = os.environ.get("ASR_ADDR_PORT")
    else:
        options["asr_addr_port"] = "ws://*****:*****@@@@@@@@@@", form["speech_input"]
                # Classify the query.
                services_needed = query_classifier.predict(form["speech_input"], upload_file)
                options["result"] = thrift_client.infer(
                    session["username"], services_needed, form["speech_input"], upload_file.read()
                )
                log("Result " + options["result"])
                # Check if Calendar service is needed.
                # If so, JavaScript needs to receive the parsed dates.
                if services_needed.has_service("CA"):
                    options["dates"] = options["result"]
                    options["result"] = None
                    return render_template("infer.html", **options)
            else:
                raise RuntimeError("Did you click the Ask button?")
    except Exception as e:
        log(e)
        if str(e) == "TSocket read 0 bytes":
            e = "Back-end service encountered a problem"
        options["error"] = e
        return render_template("infer.html", **options)
        # Display.
    return render_template("infer.html", **options)
Exemple #44
0
	def infer(self, LUCID, service_graph, text_data, image_data):
		# Create the list of QueryInput.
		query_input_list = []
		for node in service_graph.node_list:
			service = self.SERVICES[node.service_name]
			data = text_data if service.input_type == 'text' else image_data
			host, port = service.get_host_port()
			tag_list = [host, str(port), str(len(node.to_indices))]
			for to_index in node.to_indices:
				tag_list.append(str(to_index))
			query_input_list.append(self.create_query_input(
				service.input_type, data, tag_list))
		query_spec = self.create_query_spec('query', query_input_list)
		# Go through all starting indices and send requests.
		result = []
		for start_index in service_graph.starting_indices:
			service = self.SERVICES[service_graph.get_node(
				start_index).service_name]
			client, transport = self.get_client_transport(service)
			log('Sending infer request to ' + service.name)
			result.append(client.infer(str(LUCID), query_spec))
			transport.close()
		return ' '.join(result)
Exemple #45
0
	def count_images(self, username):
		log('Retrieving the number of images from images_' + username)
		return self.get_image_collection(username).count()
Exemple #46
0
	def __init__(self, SERVICES):
		self.SERVICES = SERVICES
		log('Pre-configured services: ' + str(SERVICES))
Exemple #47
0
	def get_text(self, username):
		log('Retrieving text from text_' + username)
		return [text for text in self.get_text_collection(username).find()]
Exemple #48
0
def generic_learn_route(op, form, upload_file):
	options = {}
	username = session['username']
	try:
		# Add image knowledge.
		if op == 'add_image':
			image_type = 'image'
			label = form['label']
			# Check the uploaded image.
			if upload_file.filename == '':
				raise RuntimeError('Empty file is not allowed')
			check_image_extension(upload_file)
			# Check the label of the image.
			check_text_input(label)
			# Check whether the user can add one more image.
			database.check_add_image(username)
			# Generate the id.
			image_data = upload_file.read()
			image_id = hashlib.md5(username +
				str(datetime.datetime.now())).hexdigest()
			# Send the image to IMM.
			upload_file.close()
			thrift_client.learn_image(username, image_type, image_data,
				image_id)
			# Add the image into the database.
			database.add_image(username, image_data, label, image_id)
		# Delete image knowledge.
		elif op == 'delete_image':
			image_type = 'unlearn'
			image_id = form['image_id']
			# Send the unlearn request to IMM.
			thrift_client.learn_image(username, image_type, '', image_id)
			# Delete the image from the database.
			database.delete_image(username, image_id)
		# Add text knowledge.
		elif op == 'add_text' or op == 'add_url':
			text_type = 'text' if op == 'add_text' else 'url'
			text_data = form['knowledge']
			# Check the text knowledge.
			check_text_input(text_data)
			# Check whether the user can add one more piece of text.
			database.check_add_text(username)
			# Generate the id.
			text_id = hashlib.md5(username + text_data +
				str(datetime.datetime.now())).hexdigest()
			# Send the text to QA.
			thrift_client.learn_text(username, text_type,
					text_data, text_id)
			# Add the text knowledge into the database.
			database.add_text(username, text_type, text_data, text_id)
		# Delete text knowledge.
		elif op == 'delete_text':
			text_type = 'unlearn'
			text_id = form['text_id']
			# Send the unlearn request to QA.
			thrift_client.learn_text(username, text_type, '', text_id)
			# Delete the text from into the database.
			database.delete_text(username, text_id)
		else:
			raise RuntimeError('Did you click the button?')
	except Exception as e:
		log(e)
		options['errno'] = 500
		options['error'] = str(e)
		if 'code' in e and re.match("^4\d\d$", str(e.code)):
			options['errno'] = e.code
		if str(e) == 'TSocket read 0 bytes':
			options['error'] = 'Back-end service encountered a problem'
		if str(e).startswith('Could not connect to'):
			options['error'] = 'Back-end service is not running'
	return options
Exemple #49
0
	def get_images(self, username):
		log('Retrieving all images from images_' + username)
		# Notice image['data'] was encoded using Base64.
		return [image for image in self.get_image_collection(username).find()]
	def train(self, input_type, query_classes):
		log('********************** ' + input_type + ' **********************')
		current_dir = os.path.abspath(os.path.dirname(__file__))
		# If there is no or only one possible outcomes for the input type, 
		# there is no need to train any classifier.
		if len(query_classes) <= 1:
			return DummyClassifier(query_classes.keys()[0])
		# Build DataFrame by going through all data files.
		data = DataFrame({'text': [], 'class': []})
		for query_class_name in query_classes:
			path = current_dir + '/../data/' + query_class_name + '.txt'
			log('Opening ' + path)
			lines = [line.rstrip('\n') for line in open(path)]
			rows = []
			index = []
			for text in lines:
				if text in index:
					log('duplicate in ' + path + ": " + text)
					exit(1)
				rows.append({'text': text, 'class': query_class_name})
				index.append(text)
			data = data.append(DataFrame(rows, index))
		# Build the pipeline.
		pipeline = Pipeline([
		('count_vectorizer',   CountVectorizer(ngram_range = (1, 2))),
		#     ('classifier',         PassiveAggressiveClassifier())
		('classifier',         LinearSVC()) 
		])
		# Train and k-fold cross-validate. Introduce randomness.
		data = data.reindex(numpy.random.permutation(data.index))
		k_fold = KFold(n=len(data), n_folds=6)
		scores = []
		for train_indices, test_indices in k_fold:
			train_text = data.iloc[train_indices]['text'].values
			train_y = data.iloc[train_indices]['class'].values.astype(str)
			test_text = data.iloc[test_indices]['text'].values
			test_y = data.iloc[test_indices]['class'].values.astype(str)
			pipeline.fit(train_text, train_y)
			predictions = pipeline.predict(test_text)
			score = f1_score(test_y, predictions,
							 pos_label=None if len(query_classes) == 2 else 1,
							 average='weighted')
			scores.append(score)
		log('Total documents classified:' + str(len(data)))
		log('Score:' + str(sum(scores) / len(scores)))
		# Save the classifier,
		if not os.path.exists(current_dir + '/../models'):
			os.makedirs(current_dir + '/../models')
		with open(current_dir + '/../models/dumped_classifier_' +
				input_type + '.pkl', 'wb') as fid:
			log('Saving model for ' + input_type)
			cPickle.dump(pipeline, fid)
		return pipeline
Exemple #51
0
def learn_route():
	options = {}
	username = session['username']
	try:
		form = request.form
		# Deal with POST requests.
		if request.method == 'POST':
			# If the request does not contain an "op" field.
			if not 'op' in request.form:
				raise RuntimeError('Did you click the button?')
			# Add image knowledge.
			elif form['op'] == 'add_image':
				image_type = 'image'
				label = form['label']
				# Check the uploaded image.
				upload_file = request.files['file']
				if upload_file.filename == '':
					raise RuntimeError('Empty file is not allowed')
				check_image_extension(upload_file)
				# Check the label of the image.
				check_text_input(label)
				# Check whether the user can add one more image.
				database.check_add_image(username)
				# Send the image to IMM.
				image_data = upload_file.read()
				upload_file.close()
				thrift_client.learn_image(username, image_type, image_data,
					label)
				# Add the image into the database.
				database.add_image(username, image_data, label)
			# Delete image knowledge.
			elif form['op'] == 'delete_image':
				image_type = 'unlearn'
				label = form['label']
				# Send the unlearn request to IMM.
				thrift_client.learn_image(username, image_type, '', label)
				# Delete the image from the database.
				database.delete_image(username, label)	
			# Add text knowledge.
			elif form['op'] == 'add_text' or form['op'] == 'add_url':
				text_type = 'text' if form['op'] == 'add_text' else 'url'
				text_data = form['knowledge']
				# Check the text knowledge.
				check_text_input(text_data)
				# Check whether the user can add one more piece of text.
				database.check_add_text(username)
				# Generate the id.
				text_id = hashlib.md5(username + text_data
					+ str(datetime.datetime.now())).hexdigest()
				# Send the text to QA.
				thrift_client.learn_text(username, text_type,
						text_data, text_id)
				# Add the text knowledge into the database.
				database.add_text(username, text_type, text_data, text_id)	
			# Delete text knowledge.
			elif form['op'] == 'delete_text':
				text_type = 'unlearn'
				text_id = form['text_id']
				# Send the unlearn request to QA.
				thrift_client.learn_text(username, text_type, '', text_id)
				# Delete the text from into the database.
				database.delete_text(username, text_id)			
			else:
				raise RuntimeError('Did you click the button?')
	except Exception as e:
		log(e)
		if str(e) == 'TSocket read 0 bytes':
			e = 'Back-end service encountered a problem'
		options['error'] = e
	try:
		# Retrieve knowledge.
		options['pictures'] = database.get_images(username)
		options['text'] = database.get_text(username)
	except Exception as e:
		log(e)
		options['error'] = e
	return render_template('learn.html', **options)