Exemple #1
0
    def fit(self,
            topK=50,
            shrink=100,
            similarity='cosine',
            normalize=True,
            feature_weighting="none",
            **similarity_args):

        self.topK = topK
        self.shrink = shrink

        if feature_weighting not in self.FEATURE_WEIGHTING_VALUES:
            raise ValueError(
                "Value for 'feature_weighting' not recognized. Acceptable values are {}, provided was '{}'"
                .format(self.FEATURE_WEIGHTING_VALUES, feature_weighting))

        if feature_weighting == "BM25":
            self.URM_train = self.URM_train.astype(np.float32)
            self.URM_train = okapi_BM_25(self.URM_train.T).T
            self.URM_train = check_matrix(self.URM_train, 'csr')

        elif feature_weighting == "TF-IDF":
            self.URM_train = self.URM_train.astype(np.float32)
            self.URM_train = TF_IDF(self.URM_train.T).T
            self.URM_train = check_matrix(self.URM_train, 'csr')

        similarity = Compute_Similarity(self.URM_train.T,
                                        shrink=shrink,
                                        topK=topK,
                                        normalize=normalize,
                                        similarity=similarity,
                                        **similarity_args)

        self.W_sparse = similarity.compute_similarity()
        self.W_sparse = check_matrix(self.W_sparse, format='csr')
Exemple #2
0
    def __init__(self,
                 urm_train,
                 icm,
                 urm_per_region_list,
                 urm_per_age_list,
                 weights,
                 add_pure_svd=False,
                 add_slim_bpr=False):
        self.urm_train = urm_train
        self.urm_per_region_list = urm_per_region_list
        self.urm_per_age_list = urm_per_age_list
        self.icm = icm

        self.add_pure_svd = add_pure_svd
        self.add_slim_bpr = add_slim_bpr

        self.weights = weights

        self.icfknn_list = []
        self.ucfknn_list = []
        self.icbfknn_list = []

        self.icm_bm25 = self.icm.copy().astype(np.float32)
        self.icm_bm25 = okapi_BM_25(self.icm_bm25)
        self.icm_bm25 = self.icm_bm25.tocsr()

        self.ratings = None

        self.extractor = Extractor()

        # Creation of the list of algortms that have to be used
        if self.urm_per_region_list is not None:
            for urm in self.urm_per_region_list:
                sps.csr_matrix(urm)
                self.icfknn_list.append(ItemCFKNNRecommender(urm.copy()))
                self.ucfknn_list.append(UserCFKNNRecommender(urm.copy()))
                self.icbfknn_list.append(
                    ItemCBFKNNRecommender(urm.copy(), self.icm_bm25.copy()))

        if self.urm_per_age_list is not None:
            for urm in self.urm_per_age_list:
                sps.csr_matrix(urm)
                self.icfknn_list.append(ItemCFKNNRecommender(urm.copy()))
                self.ucfknn_list.append(UserCFKNNRecommender(urm.copy()))
                self.icbfknn_list.append(
                    ItemCBFKNNRecommender(urm.copy(), self.icm_bm25.copy()))

        # self.icfknn_list.append(ItemCFKNNRecommender(self.urm_train.copy()))
        # self.ucfknn_list.append(UserCFKNNRecommender(self.urm_train.copy()))
        # self.icbfknn_list.append(ItemCBFKNNRecommender(self.urm_train.copy(), self.icm_bm25.copy()))

        if self.add_pure_svd:
            self.pure_SVD = PureSVDRecommender(self.urm_train.copy())
        if self.add_slim_bpr:
            self.slim_bpr = SLIM_BPR_Cython(self.urm_train.copy())
Exemple #3
0
    def __init__(self,  urm, icm, p_icfknn, p_ucfknn, p_cbfknn, p_slimbpr, p_puresvd, p_als, p_cfw, weights):

        # Parameter saving
        self.p_icfknn = p_icfknn
        self.p_ucfknn = p_ucfknn
        self.p_cbfknn = p_cbfknn
        self.p_slimbpr = p_slimbpr
        self.p_puresvd = p_puresvd
        self.p_als = p_als
        self.p_cfw = p_cfw

        self.weights = weights

        # Getting matrices
        self.urm = urm
        self.icm = icm

        self.icm_bm25 = self.icm.copy().astype(np.float32)
        self.icm_bm25 = okapi_BM_25(self.icm_bm25)
        self.icm_bm25 = self.icm_bm25.tocsr()

        # Creating recommenders
        if self.p_icfknn is not None:
            self.recommender_itemCFKNN = ItemCFKNNRecommender(self.urm.copy())
        if self.p_ucfknn is not None:
            self.recommender_userCFKNN = UserCFKNNRecommender(self.urm.copy())
        if self.p_cbfknn is not None:
            self.recommender_itemCBFKNN = ItemCBFKNNRecommender(self.urm.copy(), self.icm_bm25)
        if self.p_slimbpr is not None:
            self.recommender_slim_bpr = SLIM_BPR_Cython(self.urm.copy())
        if self.p_puresvd is not None:
            self.recommender_puresvd = PureSVDRecommender(self.urm.copy())
        if self.p_als is not None:
            self.recommender_als = AlternatingLeastSquare(self.urm.copy())

        _, n_items = urm.shape
        self.hybrid_ratings = np.zeros(n_items)