def run(regressionSetup, delay): stateAndCommand, nextState = loadTrajForModel(pathDataFolder + "Brent/", delay) print("nombre d'echantillons: ", len(stateAndCommand)) fa = regressionDict[regressionSetup.regression](regressionSetup) fa.getTrainingData(stateAndCommand, nextState) fa.train()
foldername = rs.CMAESpath + str(0.04) + "/" thetaname = foldername + rs.thetaFile exp = Experiments(rs, 0.04, False, foldername, thetaname,rs.popsizeCmaes,rs.period, "Inv") #exp2 = Experiments(rs, 0.04, False, foldername, thetaname,rs.popsizeCmaes,rs.period,"Reg") exp3 = Experiments(rs, 0.04, False, foldername, thetaname,rs.popsizeCmaes,rs.period,"Hyb") ''' c=Chrono() for i in range(30): cost, time = exp.runMultiProcessTrajectories(10) c.stop() print("Average cost: ", cost) print("Average time: ", time) ''' stateAndCommand, nextState = loadTrajForModel(pathDataFolder + "Brent/", 10) #stateAndCommand, nextState = loadTrajForModel(pathDataFolder + "CMAEScluster/0.02/cluster/Log/", 10) state=stateAndCommand[:,:4] command=stateAndCommand[:,4:] #exp2.tm.stateEstimator.initStore(state) exp3.tm.stateEstimator.initStore(state) nbE=0 error=np.zeros(4) c=Chrono() for i in range(state.shape[0]): if(state[i][0]==0 and state[i][1]==0): exp.tm.stateEstimator.initStore(state[i]) tmp=0 inferredState = exp.tm.stateEstimator.getEstimState(state[i], command[i][:6])