def solver(method: str, kp: Knapsack, items: List[Item], additionalArgs=None):
    if method == 'Heuristic':
        # Execute the heuristic method
        simple_heuristic = SimpleHeuristic(additionalArgs)
        return ConstructiveSolution(kp, items, simple_heuristic).getValue()
    elif method == 'SimulatedAnnealing':
        # Execute the Simulated Annealing metaheuristic
        return solveMetaheuristic(method, kp, items, additionalArgs)
    elif method == 'RandomSearch':
        # Execute the Random Search metaheuristic
        return solveMetaheuristic(method, kp, items, additionalArgs)
    elif method == 'HyperheuristicNaive':
        # Execute the Hyper-heuristic naive model
        hh = HyperheuristicNaive(additionalArgs)
        return ConstructiveSolution(kp, items, hh).getValue()
    elif method == 'Hyperheuristic':
        # Execute the Hyper-heuristic based on LSTM model
        return hyperheuristicSolver(kp, items, additionalArgs).getValue()
    elif method == 'Backtracking':
        # Execute the recursive backtracking method
        return kpBacktracking(kp.getCapacity(), items).getValue()
    elif method == 'DP':
        # Execute the dynamic programming method
        return kpDP(kp.getCapacity(), items).getValue()
    elif method == 'MILP':
        # Execute the mixed integer linear programming method
        return kpMILP(kp.getCapacity(), items).getValue()
    elif method in list(heuristicComparison.keys()):
        # Given the heuristic as method parameter, execute the constructive heuristic method
        simple_heuristic = SimpleHeuristic(method)
        return ConstructiveSolution(kp, items, simple_heuristic).getValue()
    else:
        return 0
def kpDP(W: int, items: List[Item]):
    n = len(items)
    A = np.zeros((n + 1, W + 1))

    # Calculate the DP in the bottom-up fashion way
    for idx, item in enumerate(items, start=1):
        w, p = item.getWeight(), item.getProfit()
        for Wi in range(W + 1):
            if Wi == 0:
                continue
            elif idx == 0:
                A[idx, Wi] = p if w <= Wi else 0
            elif w <= Wi:
                A[idx, Wi] = max(A[idx - 1, Wi], A[idx - 1, Wi - w] + p)
            else:
                A[idx, Wi] = A[idx - 1, Wi]

    # Find the items that get the best solution
    kp, idx = Knapsack(W), n
    while idx >= 1 and kp.getCapacity() > 0:
        if A[idx - 1, kp.getCapacity()] != A[idx, kp.getCapacity()]:
            kp.pack(items[idx - 1])
        idx -= 1
    return kp
Exemple #3
0
def solveMetaheuristic(method: str,
                       kp: Knapsack,
                       items: List[Item],
                       saveMetaheuristic=False,
                       fileName='traindata.csv',
                       overwrite=False):
    W = kp.getCapacity()
    items_copy = items.copy()

    # Execute the chosen method
    if method == 'SimulatedAnnealing':
        kp, mh = SimulatedAnnealing(kp, items)
    elif method == 'RandomSearch':
        kp, mh = RandomSearch(kp, items)
    else:
        return 0

    # Save the sequence of heuristics
    if saveMetaheuristic:
        mh.saveMetaheuristic(W, items_copy, fileName, overwrite)
    return kp.getValue()