def before_feature(context, feature): create_dir(logs_path) context.feature_logging = MyLogging() context.log_feature_file = logs_path + "\\%s_Log.log" % feature.name context.feature_logging.add_log_file(context.log_feature_file) context.feature_logging.log().info("Start Feature: " + feature.name)
def before_scenario(context, scenario): context.timeStump = str(time.strftime('%Y-%m-%d %H:%M:%S')) context.screanDirName = get_screen_path( ) + "\\" + scenario.name + "_" + context.timeStump.replace(":", "_") create_dir(context, context.screanDirName) context.logFile = context.screanDirName + "\\Log.txt" context.mylogging.log(context.logFile).info("Scenario started: " + scenario.name) set_up(context) context.mylogging.log(context.logFile).info("URL: " + get_url(context))
def before_scenario(context, scenario): context.scenario_logging = MyLogging() context.scenario_name = scenario.name.replace(" ", "_") context.time_stump = str(time.strftime('%Y-%m-%d_%H_%M_%S')) context.logs_dir_name = logs_path + "\\" + context.scenario_name + "_" + context.time_stump create_dir(context, context.logs_dir_name) context.log_file = context.logs_dir_name + "\\%s_Log_%s.log" % ( context.scenario_name, context.time_stump) context.scenario_logging.add_log_file(context.log_file) set_up(context, "TODO") context.scenario_logging.log().info("Scenario started: " + scenario.name)
def test_func(args, shared_model, env_conf, datasets=None, tests=None, shared_dict=None): ptitle('Valid agent') if args.valid_gpu < 0: gpu_id = args.gpu_ids[-1] else: gpu_id = args.valid_gpu env_conf["env_gpu"] = gpu_id if not args.deploy: log = {} logger = Logger(args.log_dir) create_dir(args.log_dir + "models/") create_dir(args.log_dir + "tifs/") create_dir(args.log_dir + "tifs_test/") os.system("cp *.py " + args.log_dir) os.system("cp *.sh " + args.log_dir) os.system("cp models/*.py " + args.log_dir + "models/") setup_logger('{}_log'.format(args.env), r'{0}{1}_log'.format(args.log_dir, args.env)) log['{}_log'.format(args.env)] = logging.getLogger('{}_log'.format( args.env)) d_args = vars(args) env_conf_log = env_conf if tests is not None: if args.testlbl: test_env = EM_env(tests[0], env_conf, type="test", gt_lbl_list=tests[1]) else: test_env = EM_env(tests[0], env_conf, type="test") if not args.deploy: for k in d_args.keys(): log['{}_log'.format(args.env)].info('{0}: {1}'.format( k, d_args[k])) for k in env_conf_log.keys(): log['{}_log'.format(args.env)].info('{0}: {1}'.format( k, env_conf_log[k])) torch.manual_seed(args.seed) if gpu_id >= 0: torch.cuda.manual_seed(args.seed) raw_list, gt_lbl_list = datasets env = EM_env(raw_list, env_conf, type="train", gt_lbl_list=gt_lbl_list) reward_sum = 0 start_time = time.time() num_tests = 0 reward_total_sum = 0 player = Agent(None, env, args, None) player.gpu_id = gpu_id player.model = get_model(args, args.model, env_conf["observation_shape"], args.features, atrous_rates=args.atr_rate, num_actions=2, split=args.data_channel, gpu_id=gpu_id, multi=args.multi) player.state = player.env.reset() player.state = torch.from_numpy(player.state).float() if gpu_id >= 0: with torch.cuda.device(gpu_id): player.model = player.model.cuda() player.state = player.state.cuda() player.model.eval() flag = True if not args.deploy: create_dir(args.save_model_dir) recent_episode_scores = ScalaTracker(100) recent_FgBgDice = ScalaTracker(100) recent_bestDice = ScalaTracker(100) recent_diffFG = ScalaTracker(100) recent_MUCov = ScalaTracker(100) recent_MWCov = ScalaTracker(100) recent_AvgFP = ScalaTracker(100) recent_AvgFN = ScalaTracker(100) recent_rand_i = ScalaTracker(100) renderlist = [] renderlist.append(player.env.render()) max_score = 0 # ----------------------------------------- Deploy / Inference ----------------------------------------- if args.deploy: with torch.cuda.device(gpu_id): player.model.load_state_dict(shared_model.state_dict()) # inference (args, None, player.model, tests [0], test_env, gpu_id, player.env.rng, len (tests [0])) if len(tests) == 4: inference(args, None, player.model, tests[0], test_env, gpu_id, player.env.rng, len(tests[0]), tests[3]) else: inference(args, None, player.model, tests[0], test_env, gpu_id, player.env.rng, len(tests[0])) return # ----------------------------------------- End Deploy / Inference ----------------------------------------- merge_ratios = [] split_ratios = [] if args.wctrl == "s2m": schedule = args.wctrl_schedule delta = (shared_dict['spl_w'] - shared_dict['mer_w']) / (2 * len(schedule)) mer_w_delta = delta mer_w_var = shared_dict['mer_w'] mer_w_scheduler = Scheduler(mer_w_var, schedule, mer_w_delta) split_delta = -delta / len(args.out_radius) split_var = shared_dict['spl_w'] / len(args.out_radius) spl_w_scheduler = Scheduler(split_var, schedule, split_delta) while True: if flag: if gpu_id >= 0: with torch.cuda.device(gpu_id): player.model.load_state_dict(shared_model.state_dict()) else: player.model.load_state_dict(shared_model.state_dict()) player.model.eval() flag = False player.action_test() reward_sum += player.reward.mean() renderlist.append(player.env.render()) if player.done: flag = True num_tests += 1 reward_total_sum += reward_sum reward_mean = reward_total_sum / num_tests log['{}_log'.format(args.env)].info( "VALID: Time {0}, episode reward {1}, num tests {4}, episode length {2}, reward mean {3:.4f}" .format( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time)), reward_sum, player.eps_len, reward_mean, num_tests)) recent_episode_scores.push(reward_sum) if args.save_max and recent_episode_scores.mean() >= max_score: max_score = recent_episode_scores.mean() if gpu_id >= 0: with torch.cuda.device(gpu_id): state_to_save = {} state_to_save = player.model.state_dict() torch.save( state_to_save, '{0}{1}.dat'.format(args.save_model_dir, 'best_model_' + args.env)) if num_tests % args.save_period == 0: if gpu_id >= 0: with torch.cuda.device(gpu_id): state_to_save = player.model.state_dict() torch.save( state_to_save, '{0}{1}.dat'.format(args.save_model_dir, str(num_tests))) if num_tests % args.log_period == 0: if tests is not None and not args.DEBUG: inference(args, logger, player.model, tests[0], test_env, gpu_id, player.env.rng, num_tests) if (np.max(env.lbl) != 0 and np.max(env.gt_lbl) != 0): bestDice, FgBgDice, diffFG, MWCov, MUCov, AvgFP, AvgFN, rand_i = evaluate( args, player.env) recent_FgBgDice.push(FgBgDice) recent_diffFG.push(abs(diffFG)) recent_bestDice.push(bestDice) recent_MWCov.push(MWCov) recent_MUCov.push(MUCov) recent_AvgFP.push(AvgFP) recent_AvgFN.push(AvgFN) recent_rand_i.push(rand_i) log_info = { "bestDice": recent_bestDice.mean(), "FgBgDice": recent_FgBgDice.mean(), "diffFG": recent_diffFG.mean(), "MWCov": recent_MWCov.mean(), "MUCov": recent_MUCov.mean(), "AvgFP": recent_AvgFP.mean(), "AvgFN": recent_AvgFN.mean(), "rand_i": recent_rand_i.mean() } for tag, value in log_info.items(): logger.scalar_summary(tag, value, num_tests) else: bestDice, FgBgDice, diffFG = 0, 0, 0 MWCov, MUCov, AvgFP, AvgFN = 0, 0, 0, 0 rand_i = 0 print( "----------------------VALID SET--------------------------" ) print(args.env) print("bestDice:", bestDice, "FgBgDice:", FgBgDice, "diffFG:", diffFG, "MWCov:", MWCov, "MUCov:", MUCov, "AvgFP:", AvgFP, "AvgFN:", AvgFN, "rand_i:", rand_i) # print ("mean bestDice") print("Log test #:", num_tests) print("rewards: ", player.reward.mean()) print("sum rewards: ", reward_sum) print("#gt_values:", len(np.unique(player.env.gt_lbl))) print("values:") values = player.env.unique() print(np.concatenate([values[0][None], values[1][None]], 0)) print("------------------------------------------------") log_img = np.concatenate(renderlist[::-1], 0) if not "3D" in args.data: for i in range(3): player.probs.insert(0, np.zeros_like(player.probs[0])) while (len(player.probs) - 3 < args.max_episode_length): player.probs.append(np.zeros_like(player.probs[0])) probslist = [ np.repeat(np.expand_dims(prob, -1), 3, -1) for prob in player.probs ] probslist = np.concatenate(probslist, 1) probslist = (probslist * 256).astype(np.uint8, copy=False) # log_img = renderlist [-1] print(probslist.shape, log_img.shape) log_img = np.concatenate([probslist, log_img], 0) log_info = {"valid_sample": log_img} print(log_img.shape) io.imsave( args.log_dir + "tifs/" + str(num_tests) + "_sample.tif", log_img.astype(np.uint8)) io.imsave( args.log_dir + "tifs/" + str(num_tests) + "_pred.tif", player.env.lbl.astype(np.uint8)) io.imsave(args.log_dir + "tifs/" + str(num_tests) + "_gt.tif", player.env.gt_lbl.astype(np.int32)) if args.seg_scale: log_info["scaler"] = player.env.scaler for tag, img in log_info.items(): img = img[None] logger.image_summary(tag, img, num_tests) if not args.deploy: log_info = { 'mean_valid_reward': reward_mean, '100_mean_reward': recent_episode_scores.mean(), 'split_ratio': player.env.split_ratio_sum.sum() / np.count_nonzero(player.env.gt_lbl), 'merge_ratio': player.env.merge_ratio_sum.sum() / np.count_nonzero(player.env.gt_lbl), } if args.wctrl == 's2m': log_info.update({ 'mer_w': mer_w_scheduler.value(), 'spl_w': spl_w_scheduler.value() * len(args.out_radius), }) merge_ratios.append(player.env.merge_ratio_sum.sum() / np.count_nonzero(player.env.gt_lbl)) split_ratios.append(player.env.split_ratio_sum.sum() / np.count_nonzero(player.env.gt_lbl)) print("split ratio: ", np.max(player.env.split_ratio_sum), np.min(player.env.split_ratio_sum)) print("merge ratio: ", np.max(player.env.merge_ratio_sum), np.min(player.env.merge_ratio_sum)) print("merge ratio: ", merge_ratios) print("split ratio: ", split_ratios) for tag, value in log_info.items(): logger.scalar_summary(tag, value, num_tests) renderlist = [] reward_sum = 0 player.eps_len = 0 if args.wctrl == "s2m": shared_dict["spl_w"] = spl_w_scheduler.next() shared_dict["mer_w"] = mer_w_scheduler.next() player.env.config["spl_w"] = shared_dict["spl_w"] player.env.config["mer_w"] = shared_dict["mer_w"] player.clear_actions() state = player.env.reset(player.model, gpu_id) renderlist.append(player.env.render()) time.sleep(15) player.state = torch.from_numpy(state).float() if gpu_id >= 0: with torch.cuda.device(gpu_id): player.state = player.state.cuda()
def before_feature(context, feature): create_dir(logs_path) context.feature_logging = MyLogging() context.log_feature_file = logs_path + "\\%s_Log.log" % feature.name context.feature_logging.add_log_file(context.log_feature_file) context.feature_logging.log().info("Start Feature: " + feature.name) def before_scenario(context, scenario): context.scenario_logging = MyLogging() context.scenario_name = scenario.name.replace(" ", "_") context.time_stump = str(time.strftime('%Y-%m-%d_%H_%M_%S')) context.logs_dir_name = logs_path + "\\" + context.scenario_name + "_" + context.time_stump create_dir(context.logs_dir_name) context.log_file = context.logs_dir_name + "\\%s_Log_%s.log" % (context.scenario_name, context.time_stump) context.scenario_logging.add_log_file(context.log_file) context.web_driver_wrapper = WebDriverWrapper() context.main_page = MainPage(context.scenario_logging, context.web_driver_wrapper) context.scenario_logging.log().info("Scenario started: " + scenario.name) def before_step(context, step): context.scenario_logging.log().info("Step: " + step.name) def after_scenario(context, scenario): context.scenario_logging.log().info("Test Finished: " + context.scenario_name)
def test_func(args, shared_model, env_conf, datasets): ptitle('Valid agent') gpu_id = args.gpu_ids[-1] env_conf["env_gpu"] = gpu_id if not args.deploy: logger = Logger(args.log_dir) saved_src_dir = args.log_dir + "/src/" create_dir(saved_src_dir) os.system("cp *.py " + saved_src_dir) os.system("cp -r Models " + saved_src_dir) os.system("cp -r run_scripts " + saved_src_dir) os.system("cp -r Utils " + saved_src_dir) torch.manual_seed(args.seed) if gpu_id >= 0: torch.cuda.manual_seed(args.seed) env = Debug_env(datasets, env_conf) reward_sum = 0 start_time = time.time() num_tests = 0 reward_total_sum = 0 player = Agent(None, env, args, None) player.gpu_id = gpu_id nChan = 3 if args.is3D: nChan = 4 if args.alpha_only: nChan = 1 if not args.is3D: player.model = get_model(args, "ENet", input_shape=env_conf["obs_shape"], num_actions=args.num_actions * nChan) elif not args.obs3D: player.model = get_model(args, "ENet", input_shape=env_conf["obs_shape"], num_actions=args.num_actions * nChan) elif args.obs3D: player.model = get_model(args, "Net3D", input_shape=env_conf["obs_shape"], num_actions=args.num_actions * nChan) player.state = player.env.reset() player.state = torch.from_numpy(player.state).float() if gpu_id >= 0: with torch.cuda.device(gpu_id): player.model = player.model.cuda() player.state = player.state.cuda() player.model.eval() flag = True if not args.deploy: create_dir(args.save_model_dir) recent_episode_scores = ScalaTracker(100) recent_rand_i = ScalaTracker(100) renderlist = [] renderlist.append(player.env.render()) max_score = 0 if args.deploy: deploy(args, shared_model, player, gpu_id) exit() while True: if flag: if gpu_id >= 0: with torch.cuda.device(gpu_id): player.model.load_state_dict(shared_model.state_dict()) else: player.model.load_state_dict(shared_model.state_dict()) player.model.eval() flag = False player.action_test() reward_sum += player.reward.mean() renderlist.append(player.env.render()) if player.done: flag = True num_tests += 1 reward_total_sum += reward_sum reward_mean = reward_total_sum / num_tests print( "VALID: Time {0}, episode reward {1}, num tests {4}, episode length {2}, reward mean {3:.4f}" .format( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time)), reward_sum, player.eps_len, reward_mean, num_tests)) recent_episode_scores.push(reward_sum) if num_tests % args.save_period == 0: if gpu_id >= 0: with torch.cuda.device(gpu_id): state_to_save = player.model.state_dict() torch.save( state_to_save, '{0}{1}.dat'.format(args.save_model_dir, str(num_tests))) if num_tests % args.log_period == 0: print( "----------------------VALID SET--------------------------" ) print(args.env) print("Log test #:", num_tests) print("rewards: ", player.reward.mean()) print("sum rewards: ", reward_sum) log_rewards = [ int(rew * 100) for rew in player.env.sum_rewards ] print("rewards:", log_rewards) print("action: ", player.env.actions) print("reward history: ", player.env.rewards) print("------------------------------------------------") log_img = np.concatenate(renderlist, 0) log_info = {"valid_sample": log_img} for tag, img in log_info.items(): img = img[None] logger.image_summary(tag, img, num_tests) if not args.deploy: log_info = { 'mean_valid_reward': reward_mean, '100_mean_reward': recent_episode_scores.mean(), } for tag, value in log_info.items(): logger.scalar_summary(tag, value, num_tests) if args.save_sample: deploy_list = player.env.deploy print(len(deploy_list)) for stepi, (vol, ref_img, lut, _) in enumerate(deploy_list): io.imsave( args.log_dir + "/" + str(num_tests) + "_vol_" + str(stepi) + ".tif", vol) io.imsave( args.log_dir + "/" + str(num_tests) + "_ref_" + str(stepi) + ".tif", ref_img) plt.figure(figsize=(10, 10)) plt.plot(range(256), lut[..., 2], 'b') plt.plot(range(256), lut[..., 1], 'g') plt.plot(range(256), lut[..., 0], 'r') plt.plot(range(256), lut[..., 3], 'gray') plt.ylabel('Mapping value') plt.xlabel('Voxel intensity') plt.title("Transfer function visualization") plt.savefig("Ref_LUT" + "_" + str(num_tests) + "_" + str(stepi) + ".png") renderlist = [] reward_sum = 0 player.eps_len = 0 player.clear_actions() state = player.env.reset() renderlist.append(player.env.render()) time.sleep(15) player.state = torch.from_numpy(state).float() if gpu_id >= 0: with torch.cuda.device(gpu_id): player.state = player.state.cuda()