def main():
    global args
    args = parser.parse_args()
    if args.num_samples == 0:
        args.num_samples = None
    if args.val_batch_size is None:
        args.val_batch_size = args.batch_size
    if args.seed:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        # torch.backends.cudnn.deterministic = True
        # warnings.warn('You have chosen to seed training. '
        # 'This will turn on the CUDNN deterministic setting, '
        # 'which can slow down your training considerably! '
        # 'You may see unexpected behavior when restarting from checkpoints.')

    # For distributed training
    # init_distributed_mode(args)

    if not args.no_cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")
    torch.backends.cudnn.benchmark = args.cudnn
    # Init model
    channels_in = 1 if args.input_type == 'depth' else 4
    model = Models.define_model(mod=args.mod,
                                in_channels=channels_in,
                                thres=args.thres)
    define_init_weights(model, args.weight_init)
    # Load on gpu before passing params to optimizer
    if not args.no_cuda:
        if not args.multi:
            model = model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()
            # model.cuda()
            # model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
            # model = model.module

    save_id = '{}_{}_{}_{}_{}_batch{}_pretrain{}_wlid{}_wrgb{}_wguide{}_wpred{}_patience{}_num_samples{}_multi{}'.\
              format(args.mod, args.optimizer, args.loss_criterion,
                     args.learning_rate,
                     args.input_type,
                     args.batch_size,
                     args.pretrained, args.wlid, args.wrgb, args.wguide, args.wpred,
                     args.lr_decay_iters, args.num_samples, args.multi)

    # INIT optimizer/scheduler/loss criterion
    optimizer = define_optim(args.optimizer, model.parameters(),
                             args.learning_rate, args.weight_decay)
    scheduler = define_scheduler(optimizer, args)

    # Optional to use different losses
    criterion_local = define_loss(args.loss_criterion)
    criterion_lidar = define_loss(args.loss_criterion)
    criterion_rgb = define_loss(args.loss_criterion)
    criterion_guide = define_loss(args.loss_criterion)

    # INIT dataset
    dataset = Datasets.define_dataset(args.dataset, args.data_path,
                                      args.input_type, args.side_selection)
    dataset.prepare_dataset()
    train_loader, valid_loader, valid_selection_loader = get_loader(
        args, dataset)

    # Resume training
    best_epoch = 0
    lowest_loss = np.inf
    args.save_path = os.path.join(args.save_path, save_id)
    mkdir_if_missing(args.save_path)
    log_file_name = 'log_train_start_0.txt'
    args.resume = first_run(args.save_path)
    if args.resume and not args.test_mode and not args.evaluate:
        path = os.path.join(
            args.save_path,
            'checkpoint_model_epoch_{}.pth.tar'.format(int(args.resume)))
        if os.path.isfile(path):
            log_file_name = 'log_train_start_{}.txt'.format(args.resume)
            # stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(path)
            args.start_epoch = checkpoint['epoch']
            lowest_loss = checkpoint['loss']
            best_epoch = checkpoint['best epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            log_file_name = 'log_train_start_0.txt'
            # stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> no checkpoint found at '{}'".format(path))

    # Only evaluate
    elif args.evaluate:
        print("Evaluate only")
        best_file_lst = glob.glob(os.path.join(args.save_path, 'model_best*'))
        if len(best_file_lst) != 0:
            best_file_name = best_file_lst[0]
            print(best_file_name)
            if os.path.isfile(best_file_name):
                sys.stdout = Logger(
                    os.path.join(args.save_path, 'Evaluate.txt'))
                print("=> loading checkpoint '{}'".format(best_file_name))
                checkpoint = torch.load(best_file_name)
                model.load_state_dict(checkpoint['state_dict'])
            else:
                print("=> no checkpoint found at '{}'".format(best_file_name))
        else:
            print("=> no checkpoint found at due to empy list in folder {}".
                  format(args.save_path))
        validate(valid_selection_loader, model, criterion_lidar, criterion_rgb,
                 criterion_local, criterion_guide)
        return

    # Start training from clean slate
    else:
        # Redirect stdout
        sys.stdout = Logger(os.path.join(args.save_path, log_file_name))

    # INIT MODEL
    print(40 * "=" + "\nArgs:{}\n".format(args) + 40 * "=")
    print("Init model: '{}'".format(args.mod))
    print("Number of parameters in model {} is {:.3f}M".format(
        args.mod.upper(),
        sum(tensor.numel() for tensor in model.parameters()) / 1e6))

    # Load pretrained state for cityscapes in GLOBAL net
    if args.pretrained and not args.resume:
        if not args.load_external_mod:
            if not args.multi:
                target_state = model.depthnet.state_dict()
            else:
                target_state = model.module.depthnet.state_dict()
            check = torch.load('erfnet_pretrained.pth')
            for name, val in check.items():
                # Exclude multi GPU prefix
                mono_name = name[7:]
                if mono_name not in target_state:
                    continue
                try:
                    target_state[mono_name].copy_(val)
                except RuntimeError:
                    continue
            print('Successfully loaded pretrained model')
        else:
            check = torch.load('external_mod.pth.tar')
            lowest_loss_load = check['loss']
            target_state = model.state_dict()
            for name, val in check['state_dict'].items():
                if name not in target_state:
                    continue
                try:
                    target_state[name].copy_(val)
                except RuntimeError:
                    continue
            print("=> loaded EXTERNAL checkpoint with best rmse {}".format(
                lowest_loss_load))

    # Start training
    for epoch in range(args.start_epoch, args.nepochs):
        print("\n => Start EPOCH {}".format(epoch + 1))
        print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
        print(args.save_path)
        # Adjust learning rate
        if args.lr_policy is not None and args.lr_policy != 'plateau':
            scheduler.step()
            lr = optimizer.param_groups[0]['lr']
            print('lr is set to {}'.format(lr))

        # Define container objects
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        score_train = AverageMeter()
        score_train_1 = AverageMeter()
        metric_train = Metrics(max_depth=args.max_depth,
                               disp=args.use_disp,
                               normal=args.normal)

        # Train model for args.nepochs
        model.train()

        # compute timing
        end = time.time()

        # Load dataset
        for i, (input, gt) in tqdm(enumerate(train_loader)):

            # Time dataloader
            data_time.update(time.time() - end)

            # Put inputs on gpu if possible
            if not args.no_cuda:
                input, gt = input.cuda(), gt.cuda()
            prediction, lidar_out, precise, guide = model(input, epoch)

            loss = criterion_local(prediction, gt)
            loss_lidar = criterion_lidar(lidar_out, gt)
            loss_rgb = criterion_rgb(precise, gt)
            loss_guide = criterion_guide(guide, gt)
            loss = args.wpred * loss + args.wlid * loss_lidar + args.wrgb * loss_rgb + args.wguide * loss_guide

            losses.update(loss.item(), input.size(0))
            metric_train.calculate(prediction[:, 0:1].detach(), gt.detach())
            score_train.update(metric_train.get_metric(args.metric),
                               metric_train.num)
            score_train_1.update(metric_train.get_metric(args.metric_1),
                                 metric_train.num)

            # Clip gradients (usefull for instabilities or mistakes in ground truth)
            if args.clip_grad_norm != 0:
                nn.utils.clip_grad_norm(model.parameters(),
                                        args.clip_grad_norm)

            # Setup backward pass
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Time trainig iteration
            batch_time.update(time.time() - end)
            end = time.time()

            # Print info
            if (i + 1) % args.print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Metric {score.val:.4f} ({score.avg:.4f})'.format(
                          epoch + 1,
                          i + 1,
                          len(train_loader),
                          batch_time=batch_time,
                          loss=losses,
                          score=score_train))

        print("===> Average RMSE score on training set is {:.4f}".format(
            score_train.avg))
        print("===> Average MAE score on training set is {:.4f}".format(
            score_train_1.avg))
        # Evaulate model on validation set
        print("=> Start validation set")
        score_valid, score_valid_1, losses_valid = validate(
            valid_loader, model, criterion_lidar, criterion_rgb,
            criterion_local, criterion_guide, epoch)
        print("===> Average RMSE score on validation set is {:.4f}".format(
            score_valid))
        print("===> Average MAE score on validation set is {:.4f}".format(
            score_valid_1))
        # Evaluate model on selected validation set
        if args.subset is None:
            print("=> Start selection validation set")
            score_selection, score_selection_1, losses_selection = validate(
                valid_selection_loader, model, criterion_lidar, criterion_rgb,
                criterion_local, criterion_guide, epoch)
            total_score = score_selection
            print("===> Average RMSE score on selection set is {:.4f}".format(
                score_selection))
            print("===> Average MAE score on selection set is {:.4f}".format(
                score_selection_1))
        else:
            total_score = score_valid

        print("===> Last best score was RMSE of {:.4f} in epoch {}".format(
            lowest_loss, best_epoch))
        # Adjust lr if loss plateaued
        if args.lr_policy == 'plateau':
            scheduler.step(total_score)
            lr = optimizer.param_groups[0]['lr']
            print('LR plateaued, hence is set to {}'.format(lr))

        # File to keep latest epoch
        with open(os.path.join(args.save_path, 'first_run.txt'), 'w') as f:
            f.write(str(epoch))

        # Save model
        to_save = False
        if total_score < lowest_loss:

            to_save = True
            best_epoch = epoch + 1
            lowest_loss = total_score
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'best epoch': best_epoch,
                'arch': args.mod,
                'state_dict': model.state_dict(),
                'loss': lowest_loss,
                'optimizer': optimizer.state_dict()
            }, to_save, epoch)
    if not args.no_tb:
        writer.close()
Exemple #2
0
def main():
    global args
    args = parser.parse_args()
    if args.num_samples == 0:
        args.num_samples = None

    if args.cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")

    # Init model
    channels_in = 1 if args.input_type == 'depth' else 4
    model = Models.define_model(mod=args.mod, in_channels=channels_in)

    if args.mod == 'mod':
        define_init_weights(model, args.weight_init)

    # Load on gpu before passing params to optimizer
    if args.cuda:
        model = model.cuda()

    save_id = '{}_{}_{}_{}_batch{}_pretrain{}_wlid{}_wrgb{}_wguide{}_wpred{}_num_samples{}'.\
              format(args.mod, args.loss_criterion_source,
                     args.learning_rate,
                     args.input_type,
                     args.batch_size,
                     args.load_path!='', args.wlid, args.wrgb, args.wguide, args.wpred,
                    args.num_samples)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.learning_rate,
                                 weight_decay=args.weight_decay)

    # Optional to use different losses
    criterion_source = define_loss(args.loss_criterion_source)
    criterion_target = define_loss(args.loss_criterion_target)

    # INIT KITTI dataset
    print('Load KITTI')
    dataset = Datasets.define_dataset('kitti', args.data_path_target,
                                      args.input_type)
    dataset.prepare_dataset()
    train_loader = get_loader(args, dataset, only_train=True)

    # INIT Carla dataset
    print('Load Carla')
    dataset = Datasets.define_dataset('carla', args.data_path_source,
                                      args.input_type)
    dataset.prepare_dataset()
    # The sparsification of the data and projection from the LiDAR reference
    # frame to the RGB camera explained in the paper happens in the dataloader
    train_loader_carla = get_loader(args,
                                    dataset,
                                    is_carla=True,
                                    only_train=True)
    train_loader_iter = iter(train_loader)

    # Resume training
    if args.save_name == '':
        args.save_path = os.path.join(args.save_path, save_id)
    else:
        args.save_path = os.path.join(args.save_path, args.save_name)
    if os.path.exists(args.save_path):
        raise Exception('Save path already exists')

    mkdir_if_missing(args.save_path)

    # INIT MODEL
    print(40 * "=" + "\nArgs:{}\n".format(args) + 40 * "=")
    print("Init model: '{}'".format(args.mod))
    print("Number of parameters in model {} is {:.3f}M".format(
        args.mod.upper(),
        sum(tensor.numel() for tensor in model.parameters()) / 1e6))

    # Load pretrained state
    if args.load_path != '':
        print("=> loading checkpoint {:s}".format(args.load_path))
        check = torch.load(
            args.load_path,
            map_location=lambda storage, loc: storage)['state_dict']
        model.load_state_dict(check)

    if args.use_image_translation:
        image_trans_net = ResnetGeneratorCycle(3, 3, 64, n_blocks=9)
        state_dict = torch.load('./image_translation_weights.pth')
        image_trans_net.load_state_dict(state_dict)
        image_trans_net.eval()
        if args.cuda:
            image_trans_net = image_trans_net.cuda()

    # Start training
    global_step = 0
    for epoch in range(args.start_epoch, args.nepochs):
        print("\n => Start EPOCH {}".format(epoch + 1))

        # Define container objects
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        score_train_rmse = AverageMeter()
        score_train_mae = AverageMeter()
        metric_train = Metrics(max_depth=args.max_depth)

        # Train model for args.nepochs
        model.train()

        # compute timing
        end = time.time()
        for i, (input, gt, filepath) in tqdm(enumerate(train_loader_carla)):
            # Time dataloader
            data_time.update(time.time() - end)
            loss_extra = 0
            # Put inputs on gpu if possible
            if args.cuda:
                input, gt = input.cuda(), gt.cuda()

            # The LiDAR depths have large regions where no input depth is given
            # We remove all of the GT in the synthetic data where no input information is given
            # in a NxN window around the GT point (we set N=41) to avoid the model trying to estimate
            # depth for areas without any input guidance
            input_depth = input[:, 0:1]
            input_depth, gt = filter_data(input_depth,
                                          gt,
                                          max_depth=args.max_depth)
            input[:, 0:1] = input_depth

            ### Load target set (KITTI) data
            if args.train_target:
                try:
                    input_target, gt_target, filepath_t = next(
                        train_loader_iter)
                except:
                    train_loader_iter = iter(train_loader)
                    input_target, gt_target, filepath_t = next(
                        train_loader_iter)

                if args.cuda:
                    input_target, gt_target = input_target.cuda(
                    ), gt_target.cuda()

            if args.use_image_translation:
                # The CycleGAN model was trained with inputs in the range of [-1, 1]
                with torch.no_grad():
                    rgb_trans = image_trans_net(input[:, 1:] / 128.5 - 1)
                rgb_trans = 128.5 * (rgb_trans + 1)
                rgb_trans = rgb_trans.clamp(0, 255)
                input = torch.cat([input[:, :1], rgb_trans], 1)

            if args.train_target:
                input_joint = torch.cat([input, input_target])
                prediction, lidar_out, precise, guide = model(
                    input_joint, epoch)
                # We separate predictions from the target domain and source domain
                prediction_target, lidar_out_target, precise_target, guide_target = prediction[
                    args.batch_size:], lidar_out[args.batch_size:], precise[
                        args.batch_size:], guide[args.batch_size:]
                prediction, lidar_out, precise, guide = prediction[:args.
                                                                   batch_size], lidar_out[:
                                                                                          args
                                                                                          .
                                                                                          batch_size], precise[:
                                                                                                               args
                                                                                                               .
                                                                                                               batch_size], guide[:
                                                                                                                                  args
                                                                                                                                  .
                                                                                                                                  batch_size]
            else:
                prediction, lidar_out, precise, guide = model(input, epoch)

            # We compute the loss for the source domain data
            loss = criterion_source(prediction, gt)
            loss_lidar = criterion_source(lidar_out, gt)
            loss_rgb = criterion_source(precise, gt)
            loss_guide = criterion_source(guide, gt)
            loss = args.wpred * loss + args.wlid * loss_lidar + args.wrgb * loss_rgb + args.wguide * loss_guide

            if args.train_target:
                loss_target = 0
                # We filter the input data for supervision as explained in the paper
                filtered_sparse_data = filter_sparse_guidance(
                    input_target[:, :1], args.filter_window, args.filter_th)
                # We compute the loss for the target domain data
                loss_target += args.wpred * (criterion_target(
                    prediction_target, filtered_sparse_data))
                loss_target += args.wlid * (criterion_target(
                    lidar_out_target, filtered_sparse_data))
                loss_target += args.wrgb * (criterion_target(
                    precise_target, filtered_sparse_data))
                loss_target += args.wguide * (criterion_target(
                    guide_target, filtered_sparse_data))

                loss = loss + loss_target

            metric_train.calculate(prediction[:, 0:1].detach(), gt.detach())

            score_train_rmse.update(metric_train.get_metric('rmse'),
                                    metric_train.num)
            score_train_mae.update(metric_train.get_metric('mae'),
                                   metric_train.num)
            losses.update(loss.item(), input.size(0))

            # Optimization step
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            batch_time.update(time.time() - end)
            end = time.time()

            global_step += 1

            # Print info
            if (i + 1) % args.print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'RMSE Train {score.val:.4f} ({score.avg:.4f})'.format(
                          epoch + 1,
                          i + 1,
                          len(train_loader_carla),
                          batch_time=batch_time,
                          loss=losses,
                          score=score_train_rmse))

            if global_step == args.n_training_iterations:
                dict_save = {
                    'epoch': epoch + 1,
                    'arch': args.mod,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                }
                save_checkpoint(dict_save, False, epoch + 1, global_step)
                return 1
        print("===> Average RMSE score on training set is {:.4f}".format(
            score_train_rmse.avg))
        print("===> Average MAE score on training set is {:.4f}".format(
            score_train_mae.avg))
        dict_save = {
            'epoch': epoch + 1,
            'arch': args.mod,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict()
        }
        save_checkpoint(dict_save, False, epoch + 1)