from pathlib import Path from VSR.DataLoader.Dataset import load_datasets, Dataset from VSR.DataLoader.Loader import QuickLoader from VSR.Models import get_model, list_supported_models from VSR.Util.Config import Config from VSR.Framework.Callbacks import ( save_image, to_rgb, to_gray, lr_decay ) try: from .custom_api import * except ImportError: from custom_api import * tf.flags.DEFINE_enum('model', None, list_supported_models(), help="specify a model to use") tf.flags.DEFINE_enum('output_color', 'RGB', ('RGB', 'L', 'GRAY', 'Y'), help="specify output color format") tf.flags.DEFINE_integer('epochs', 50, lower_bound=1, help="training epochs") tf.flags.DEFINE_integer('steps_per_epoch', 200, lower_bound=1, help="specify steps in every epoch training") tf.flags.DEFINE_integer('threads', 1, lower_bound=1, help="number of threads to use while reading data") tf.flags.DEFINE_integer('output_index', -1, help="specify access index of output array") tf.flags.DEFINE_string('c', None, help="specify a configure file") tf.flags.DEFINE_string('p', None, help="specify a parameter file, otherwise will use the file in ./parameters") tf.flags.DEFINE_string('test', None, help="specify another dataset for testing") tf.flags.DEFINE_string('infer', None, help="specify a file, a path or a dataset for inferring") tf.flags.DEFINE_string('save_dir', '../Results', help="specify a folder to save checkpoint and output images") tf.flags.DEFINE_string('data_config', '../Data/datasets.yaml', help="path to data config file") tf.flags.DEFINE_string('dataset', 'none', help="specify a dataset alias for training") tf.flags.DEFINE_string('memory_limit', None, help="limit the memory usage. i.e. '4GB', '1024MB'") tf.flags.DEFINE_string('comment', None, help="append a postfix string to save dir") tf.flags.DEFINE_multi_string('add_custom_callbacks', None, help="")
from VSR.Util.Config import Config from VSR.Framework.Callbacks import save_image, to_rgb, to_gray, lr_decay # tricky import for intellisense try: from .custom_api import * except ImportError: from custom_api import * # Import models in development try: from Exp import * except ImportError as ex: pass tf.flags.DEFINE_enum('model', 'srcnn', list_supported_models(), help="specify a model to use") tf.flags.DEFINE_enum('output_color', 'RGB', ('RGB', 'L', 'GRAY', 'Y'), help="specify output color format") tf.flags.DEFINE_integer('epochs', 50, lower_bound=1, help="training epochs") tf.flags.DEFINE_integer('steps_per_epoch', 200, lower_bound=1, help="specify steps in every epoch training") tf.flags.DEFINE_integer('threads', 1, lower_bound=1, help="number of threads to use while reading data") tf.flags.DEFINE_integer('output_index', -1,