Exemple #1
0
def main():
    model_settings = [Baseline2, Baseline1]
    BNs = [True, False]
    dropouts = [True, False]
    augments = [True, False]

    idx = 0
    for BN in BNs[::-1]:
        for aug in augments:
            for dropout in dropouts:
                for config in model_settings:
                    print("BN", BN)
                    print("Augmentation", aug)
                    print("dropout", dropout)
                    print("config", config)

                    settings = config()
                    settings.BATCH_NORM = BN
                    settings.DROPOUT = dropout
                    settings.AUGMENTATION = aug

                    expdir = "experiments/train/baseline/" + str(idx) + "/"

                    trainer = TrainAE(settings, expdir, calc_DA_MAE)
                    expdir = trainer.expdir  #get full path

                    model = trainer.train(EPOCHS,
                                          test_every=test_every,
                                          num_epochs_cv=num_epochs_cv,
                                          print_every=print_every,
                                          small_debug=SMALL_DEBUG_DOM)

                    idx += 1
def main():
    res_layers = [3, 9, 27]
    cardinalities = [1, 8, 32]

    idx = 0

    for layer in res_layers:
        for cardinality in cardinalities:
            print("Layers", layer)
            print("Cardinality", cardinality)

            kwargs = {"layers": layer, "cardinality": cardinality}

            settings = ResNeXt(**kwargs)
            settings.AUGMENTATION = True
            settings.DEBUG = False
            expdir = exp_base + str(idx) + "/"

            trainer = TrainAE(settings, expdir, calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(EPOCHS,
                                  test_every=test_every,
                                  num_epochs_cv=num_epochs_cv,
                                  learning_rate=LR,
                                  print_every=print_every,
                                  small_debug=SMALL_DEBUG_DOM)

            idx += 1
Exemple #3
0
def main():
    res_layers = [3, 9, 27]
    cardinalities = [1, 8, 32]

    idx = 0
    layer = 3
    cardinality = 1
    expdir = exp_base + str(0) + "/"

    print("Layers", layer)
    print("Cardinality", cardinality)

    kwargs = {"layers": layer, "cardinality": cardinality}
    _, settings = ML_utils.load_model_and_settings_from_dir(exp_load)
    settings.AE_MODEL_FP = model_fp
    settings.GPU_DEVICE = GPU_DEVICE
    settings.export_env_vars()

    expdir = exp_base + str(idx) + "/"

    trainer = TrainAE(settings, expdir, calc_DA_MAE)
    expdir = trainer.expdir  #get full path

    model = trainer.train(EPOCHS,
                          test_every=test_every,
                          num_epochs_cv=num_epochs_cv,
                          learning_rate=LR,
                          print_every=print_every,
                          small_debug=SMALL_DEBUG_DOM)
 def test_AE_train_3d(self, tmpdir):
     """Test no exception thrown"""
     epochs = 1
     settings = self.__settings(tmpdir)
     expdir = tmpdir.mkdir("experiments/")
     trainer = TrainAE(settings, str(expdir))
     model = trainer.train(epochs, num_workers=0)
Exemple #5
0
def main():
    layer = 6
    cardinality = 4
    print("Layers", layer)
    print("Cardinality", cardinality)

    kwargs = {"layers": layer, "cardinality": cardinality}

    settings = ResNeXt(**kwargs)
    settings.AUGMENTATION = True
    settings.DEBUG = False
    settings.GPU_DEVICE = GPU_DEVICE
    settings.SEED = 19
    settings.export_env_vars()

    expdir = exp_base

    trainer = TrainAE(settings, expdir, calc_DA_MAE)
    expdir = trainer.expdir  #get full path

    model = trainer.train(EPOCHS,
                          test_every=test_every,
                          num_epochs_cv=num_epochs_cv,
                          learning_rate=LR,
                          print_every=print_every,
                          small_debug=SMALL_DEBUG_DOM)
Exemple #6
0
def main():
    print("updated")
    model_settings = [BaselineBlock, Baseline2, Baseline1,]
    augments = [True, False]

    idx = 0

    for aug in augments:
        for config in model_settings:
            print("Augmentation", aug)
            print("model", config)

            settings = config()
            settings.AUGMENTATION = aug
            settings.DEBUG = False
            expdir = exp_base + str(idx) + "/"


            trainer = TrainAE(settings, expdir, calc_DA_MAE)
            expdir = trainer.expdir #get full path


            model = trainer.train(EPOCHS, test_every=test_every, num_epochs_cv=num_epochs_cv,
                                    learning_rate = LR, print_every=print_every, small_debug=SMALL_DEBUG_DOM)

            idx += 1
def check_train_load_DA(config,
                        config_kwargs,
                        small_debug=True,
                        all_data=False,
                        activation=None,
                        params={
                            "var": VAR,
                            "tol": TOL
                        }):
    expdir = EXPDIR
    try:
        if not config_kwargs:
            config_kwargs = {}
        assert isinstance(config_kwargs, dict)

        settings = config(**config_kwargs)
        settings.DEBUG = False
        if activation:
            settings.ACTIVATION = activation

        calc_DA_MAE = RUN_DA_IN_TRAINING
        num_epochs_cv = 0
        print_every = 1
        test_every = 1
        lr = 0.0002

        print(settings.__class__.__name__)
        if config_kwargs:
            print(list([(k, v) for (k, v) in config_kwargs.items()]))
        trainer = TrainAE(settings, expdir, calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(EPOCHS,
                              learning_rate=lr,
                              test_every=test_every,
                              num_epochs_cv=num_epochs_cv,
                              print_every=print_every,
                              small_debug=small_debug)

        if PRINT_MODEL:
            print(model.layers_encode)
        #test loading
        model, settings = ML_utils.load_model_and_settings_from_dir(expdir)

        model.to(ML_utils.get_device())  #TODO

        x_fp = settings.get_X_fp(True)  #force init X_FP

        res_AE = run_DA_batch(settings, model, all_data, expdir, params)

        print(res_AE.head(10))
        shutil.rmtree(expdir, ignore_errors=False, onerror=None)
    except Exception as e:
        try:
            shutil.rmtree(expdir, ignore_errors=False, onerror=None)
            raise e
        except Exception as z:
            raise e
    def test_AE_train_3D_DA(self, tmpdir):
        """Test no exception thrown"""
        epochs = 1
        settings = self.__settings(tmpdir, force_init= True)
        expdir = tmpdir.mkdir("experiments/")
        calc_DA_MAE = True

        trainer = TrainAE(settings, str(expdir))
        model = trainer.train(epochs, num_workers=0, calc_DA_MAE=calc_DA_MAE)
def main():
    blocks = [
        "NeXt",
        "vanilla",
        "CBAM_vanilla",
        "CBAM_NeXt",
    ]
    Cstd = 64
    sigmoid = False
    activations = ["GDN", "prelu"]
    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0
    for activation in activations:
        for block in blocks:
            kwargs = {
                "model_name": "Tucodec",
                "block_type": block,
                "Cstd": Cstd,
                "sigmoid": sigmoid,
                "activation": activation
            }
            idx_ = idx
            idx += 1
            if idx_ % NUM_GPU != GPU_DEVICE:
                continue
            if activation == "prelu":
                if block == "NeXt" or block == "vanilla":
                    continue

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = CLIC(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx - 1) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)
Exemple #10
0
def main():

    structures = [(8, 3), (1, 27)]  #(cardinality, layers)
    substructures = ["ResNeXt3", "RDB3"]
    blocks = ["NeXt", "vanilla"]

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0
    for block in blocks:
        for substruct in substructures:
            for struct in structures:
                idx += 1
                #split work across 2 gpus:

                if idx - 1 < 6 and GPU_DEVICE == 1:
                    continue
                elif idx - 1 >= 4 and GPU_DEVICE == 0:
                    continue

                (cardinality, layers) = struct

                kwargs = {
                    "layers": layers,
                    "cardinality": cardinality,
                    "block_type": block,
                    "module_type": substruct
                }

                for k, v in kwargs.items():
                    print("{}={}, ".format(k, v), end="")
                print()

                settings = ResStack3(**kwargs)
                settings.GPU_DEVICE = GPU_DEVICE
                settings.export_env_vars()

                expdir = exp_base + str(idx - 1) + "/"

                trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
                expdir = trainer.expdir  #get full path

                model = trainer.train(expt.EPOCHS,
                                      test_every=expt.test_every,
                                      num_epochs_cv=expt.num_epochs_cv,
                                      learning_rate=expt.LR,
                                      print_every=expt.print_every,
                                      small_debug=expt.SMALL_DEBUG_DOM)
def main():
    kwargs = {
        "cardinality": 1,
        "block_type": "RNAB",
        "sigmoid": True,
        "module_type": "Bespoke",
        "attenuation": False
    }
    layers = [
        1,
        2,
        4,
        8,
    ]

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0

    for layer in layers:
        kwargs[
            "subBlock"] = "NeXt"  #this performed slightly better on first case
        kwargs["layers"] = layer
        idx += 1

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = ResStack3(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx - 1) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)
Exemple #12
0
def main():
    blocks = [
        "NeXt",
        "vanilla",
        "CBAM_vanilla",
        "CBAM_NeXt",
    ]

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0

    for block in blocks:
        kwargs = {
            "block_type": block,
            "Cstd": 32,
            "aug_scheme": 0,
            "activation": "prelu"
        }
        idx_ = idx
        idx += 1
        if idx_ % NUM_GPU != GPU_DEVICE:
            continue

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = GRDNBaseline(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx - 1) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)
def main():

    layers = [3, 6, 9, 18, 27]
    cardinalities = [1, 4, 8, 16, 32]
    substructure = "ResNeXt3"
    block = "NeXt"

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0
    for layer in layers:
        for cardinality in cardinalities:
            idx_ = idx
            idx += 1
            #split work across 4 gpus:
            if idx_ % 4 != GPU_DEVICE:
                continue

            kwargs = {
                "layers": layer,
                "cardinality": cardinality,
                "block_type": block,
                "module_type": substructure
            }
            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = ResStack3(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx_) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)
Exemple #14
0
def main():

    kwargs = {
        "model_name": "Tucodec",
        "block_type": "NeXt",
        "Cstd": 64,
        "sigmoid": False,
        "activation": "prelu"
    }
    aug_schemes = list(range(1, 5))

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0
    for aug_scheme in aug_schemes:
        kwargs["aug_scheme"] = aug_scheme

        idx_ = idx
        idx += 1
        if idx_ % NUM_GPU != GPU_DEVICE:
            continue

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = CLIC(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx - 1) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)
Exemple #15
0
def main():
    activations = ["relu"]
    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    expt.LR *= 0.1

    idx = 0
    for act in activations:

        kwargs = {
            "layers": 0,
            "cardinality": 2,
            "aug_scheme": 4,
            "activation": act
        }

        idx_ = idx
        idx += 1
        if idx_ % NUM_GPU != GPU_DEVICE:
            continue

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = ResStack3(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx - 1) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)
def main():
    blocks = ["NeXt", "vanilla"]
    channels = [32, 64]

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0

    for block in blocks:
        for Cstd in channels:
            kwargs = {
                "model_name": "Tucodec",
                "block_type": block,
                "Cstd": Cstd
            }
            idx += 1

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = CLIC(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx - 1) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)
def main():


    blocks = ["CBAM_vanilla", "vanilla", "CBAM_NeXt"]
    kwargs = {"cardinality": 1, "block_type": "RAB",
                    "sigmoid": True, "module_type": "Bespoke",
                    "attenuation": False, "layers": 4, 
                    "aug_scheme": 0}

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0

    for block in blocks:
        kwargs["subBlock"] = block

        idx_ = idx
        idx += 1
        if idx_ % NUM_GPU != GPU_DEVICE:
            continue


        settings = ResStack3(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx_) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir #get full path


            model = trainer.train(expt.EPOCHS, test_every=expt.test_every,
                                    num_epochs_cv=expt.num_epochs_cv,
                                    learning_rate = expt.LR, print_every=expt.print_every,
                                    small_debug=expt.SMALL_DEBUG_DOM)
Exemple #18
0
def main():
    blocks = ["NeXt", "vanilla"]
    kwargs = {
        "layers": 1,
        "cardinality": 1,
        "block_type": "RNAB",
        "module_type": "Bespoke"
    }
    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()

    idx = 0

    for block in blocks:
        kwargs["subBlock"] = block
        idx += 1

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = ResStack3(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx - 1) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)
Exemple #19
0
def main():
    #of form (layers, cardinality)
    param_vals = [(3, 1), (3, 8), (3, 32), (27, 32)]
    param_vals_2 = [
        (9, 1),
        (9, 8),
        (9, 32),
        (27, 1),
        (27, 8),
    ]
    param_options = [param_vals, param_vals_2]

    idx = 0
    params = param_options[PARAM_IDX]
    for param in params:
        layer, cardinality = param
        print("Layers", layer)
        print("Cardinality", cardinality)

        kwargs = {"layers": layer, "cardinality": cardinality}

        settings = ResNeXt(**kwargs)
        settings.AUGMENTATION = True
        settings.DEBUG = False
        expdir = exp_base + str(idx) + "/"

        trainer = TrainAE(settings, expdir, calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(EPOCHS,
                              test_every=test_every,
                              num_epochs_cv=num_epochs_cv,
                              learning_rate=LR,
                              print_every=print_every,
                              small_debug=SMALL_DEBUG_DOM)

        idx += 1
def main():

    activations = ["GDN", "relu"]
    lr_factors = [1, 0.2]

    resNextk3 = {
        "layers": 3,
        "cardinality": 8,
        "block_type": "vanilla",
        "module_type": "RDB3",
        "aug_scheme": 0
    }

    rabkwargs = {
        "cardinality": 1,
        "block_type": "RAB",
        "sigmoid": True,
        "module_type": "Bespoke",
        "attenuation": False,
        "layers": 4,
        "aug_scheme": 0,
        "subBlock": "NeXt",
    }

    kwarg_lst = (
        resNextk3,
        rabkwargs,
    )
    models = (
        ResStack3,
        ResStack3,
    )

    assert len(models) == len(kwarg_lst)

    idx = 0

    for index, kwargs in enumerate(kwarg_lst):
        for idx2, act in enumerate(activations):
            if TEST:
                expt = ExptConfigTest()
            else:
                expt = ExptConfig()
                expt.LR = expt.LR * lr_factors[idx2]

            Model = models[index]

            kwargs["activation"] = act
            if act == "relu":
                kwargs["aug_scheme"] = 4
            idx_ = idx
            idx += 1
            if idx_ % NUM_GPU != GPU_DEVICE:
                continue

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = Model(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx - 1) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)
def main():
    idx = 0
    ##################### 02c

    structure = (4, 27)  #(cardinality, layers)
    substructures = ["ResNeXt3", "RDB3"]
    blocks = ["CBAM_vanilla", "vanilla", "NeXt", "CBAM_NeXt"]

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()
        expt.EPOCHS = 150

    for substruct in substructures:

        for block in blocks:
            (cardinality, layers) = structure
            idx_ = idx
            idx += 1
            if idx_ % NUM_GPU != GPU_DEVICE:
                continue

            kwargs = {
                "layers": layers,
                "cardinality": cardinality,
                "block_type": block,
                "module_type": substruct,
                "aug_scheme": 0
            }

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = ResStack3(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx_) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)

    ################# 03c
    blocks = ["CBAM_vanilla", "vanilla", "CBAM_NeXt"]
    kwargs = {
        "cardinality": 1,
        "block_type": "RAB",
        "sigmoid": True,
        "module_type": "Bespoke",
        "attenuation": False,
        "layers": 4,
        "aug_scheme": 0
    }

    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()
        expt.EPOCHS = 150

    for block in blocks:
        kwargs["subBlock"] = block

        idx_ = idx
        idx += 1
        if idx_ % NUM_GPU != GPU_DEVICE:
            continue

        for k, v in kwargs.items():
            print("{}={}, ".format(k, v), end="")
        print()

        settings = ResStack3(**kwargs)
        settings.GPU_DEVICE = GPU_DEVICE
        settings.export_env_vars()

        expdir = exp_base + str(idx_) + "/"

        trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
        expdir = trainer.expdir  #get full path

        model = trainer.train(expt.EPOCHS,
                              test_every=expt.test_every,
                              num_epochs_cv=expt.num_epochs_cv,
                              learning_rate=expt.LR,
                              print_every=expt.print_every,
                              small_debug=expt.SMALL_DEBUG_DOM)

    ################################06a5
    blocks = [
        "NeXt",
        "vanilla",
        "CBAM_vanilla",
        "CBAM_NeXt",
    ]
    Cstd = 64
    sigmoid = False
    activations = ["relu"]
    if TEST:
        expt = ExptConfigTest()
    else:
        expt = ExptConfig()
        expt.EPOCHS = 300

    for activation in activations:
        for block in blocks:
            kwargs = {
                "model_name": "Tucodec",
                "block_type": block,
                "Cstd": Cstd,
                "sigmoid": sigmoid,
                "activation": activation,
                "aug_scheme": 0
            }
            idx_ = idx
            idx += 1

            if idx_ % NUM_GPU != GPU_DEVICE:
                continue

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = CLIC(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx - 1) + "/"

            trainer = TrainAE(settings, expdir, expt.calc_DA_MAE)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)
Exemple #22
0
def main():
    activations = ["GDN", "relu"]
    lr_factors = [1, 0.10]

    resNextk1 = {
        "layers": 27,
        "cardinality": 4,
        "block_type": "CBAM_vanilla",
        "module_type": "RDB3",
        "aug_scheme": 0
    }

    resNextk2 = {
        "layers": 27,
        "cardinality": 1,
        "block_type": "CBAM_vanilla",
        "module_type": "ResNeXt3",
        "aug_scheme": 0
    }

    kwarg_lst = (
        resNextk1,
        resNextk2,
    )
    models = (
        ResStack3,
        ResStack3,
    )

    assert len(models) == len(kwarg_lst)

    idx = 0

    for index, kwargs in enumerate(kwarg_lst):
        for idx2, act in enumerate(activations):
            if TEST:
                expt = ExptConfigTest()
            else:
                expt = ExptConfig()
                expt.LR = expt.LR * lr_factors[idx2]

            batch_sz = 16
            # if act == "GDN" and "module_type" == "RDB3":
            #     batch_sz = 8

            if act == "relu":
                kwargs["aug_scheme"] = 4

            Model = models[index]

            kwargs["activation"] = act

            idx_ = idx
            idx += 1

            if idx_ % NUM_GPU != GPU_DEVICE - GPU_OFFSET:
                continue

            for k, v in kwargs.items():
                print("{}={}, ".format(k, v), end="")
            print()

            settings = Model(**kwargs)
            settings.GPU_DEVICE = GPU_DEVICE
            settings.export_env_vars()

            expdir = exp_base + str(idx - 1) + "/"

            print(expdir)
            trainer = TrainAE(settings,
                              expdir,
                              expt.calc_DA_MAE,
                              batch_sz=batch_sz)
            expdir = trainer.expdir  #get full path

            model = trainer.train(expt.EPOCHS,
                                  test_every=expt.test_every,
                                  num_epochs_cv=expt.num_epochs_cv,
                                  learning_rate=expt.LR,
                                  print_every=expt.print_every,
                                  small_debug=expt.SMALL_DEBUG_DOM)