Exemple #1
0
def stylize_lines(filename, N, points):
    # Creating the L-channel
    img = cv2.imread(filename)
    cv2.imshow(filename[:-4] + '_input', img)
    img_Lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
    img_L = img_Lab[:, :, 0]
    img_A = img_Lab[:, :, 1]
    img_B = img_Lab[:, :, 2]

    #Creating Base and depth layers
    base = cv2.bilateralFilter(img_L, 9, 75, 75)
    detail = cv2.subtract(img_L, base)

    #Creating the depth map.
    F_b = 0.8
    F_d = 0.6

    base_N = base / 255
    detail_N = detail / 255
    depth = F_b * base_N + F_d * detail_N

    #Creating random points
    no_rpoints = 300
    rpoints = numpy.random.rand(no_rpoints, 2)
    rpoints[:, 0] = rpoints[:, 0] * (depth.shape[0] - 1)
    rpoints[:, 1] = rpoints[:, 1] * (depth.shape[1] - 1)
    rpoints = rpoints.astype(int)

    #increasing depth of random points
    for i in range(no_rpoints):
        point = rpoints[i]
        depth[point[0]][point[1]] = max(points[:, 2])

    #Creating new image based on visibility.
    d_img = numpy.zeros((N, img_L.shape[0], img_L.shape[1]), dtype=img_L.dtype)
    for n in range(N):
        for i in range(img_L.shape[0]):
            for j in range(img_L.shape[1]):
                q = (i, j, depth[i][j])
                if (visibility(points[n], q, depth)):
                    d_img[n][i][j] = img_L[i][j]

    f_d_img = numpy.zeros(img_L.shape, dtype='float64')
    for i in range(N):
        f_d_img += d_img[i] / N

    f_img = numpy.zeros(img_Lab.shape, dtype=img_Lab.dtype)
    f_img[:, :, 0] = f_d_img.astype(img_L.dtype)
    f_img[:, :, 1] = img_A[:, :]
    f_img[:, :, 2] = img_B[:, :]
    f_img = cv2.cvtColor(f_img, cv2.COLOR_Lab2BGR)
    cv2.imshow(filename[:-4] + '_final', f_img)
    cv2.imwrite(filename[:-4] + '_out.jpg', f_img)
Exemple #2
0
detail = cv2.subtract(img_L, base)

#Creating the depth map.
F_b = 0.8
F_d = 0.6

base_N = base / 255
detail_N = detail / 255
depth = F_b * base_N + F_d * detail_N

#Creating new image based on visibility.
d_img = numpy.zeros((N, img_L.shape[0], img_L.shape[1]), dtype=img_L.dtype)
for n in range(N):
    for i in range(img_L.shape[0]):
        for j in range(img_L.shape[1]):
            q = (i, j, depth[i][j])
            if (visibility(points[n], q, depth)):
                d_img[n][i][j] = 255

f_d_img = numpy.zeros(img_L.shape, dtype='float64')
for i in range(N):
    f_d_img += d_img[i] / N

f_img = numpy.zeros(img_Lab.shape, dtype=img_Lab.dtype)
f_img[:, :, 0] = f_d_img.astype(img_L.dtype)
f_img[:, :, 1] = img_A[:, :]
f_img[:, :, 2] = img_B[:, :]
f_img = cv2.cvtColor(f_img, cv2.COLOR_Lab2BGR)
cv2.imshow(filename[:-4] + '_final', f_img)
cv2.imwrite(filename[:-4] + '_out.jpg', f_img)