Exemple #1
0
 def Degree_1(self):
     if self.a == 0:
         self.result.append("No Solution.")
     else:
         self.eqn = Generate_EQN(self.a, self.b)
         x = strfNumber(-self.b / self.a)
         self.result.append(x)
Exemple #2
0
def Generate_EQN(*num):
    result = ''
    for i in range(len(num) - 1, -1, -1):
        if i == len(num) - 1:
            if i != 1:
                if num[0] == 1:
                    result += 'x^{' + str(i) + '}'
                elif num[0] == -1:
                    result += '-x^{' + str(i) + '}'
                else:
                    result += strfNumber(num[0]) + 'x^{' + str(i) + '}'
            else:
                if num[-2] == 1:
                    result += 'x'
                elif num[-2] == -1:
                    result += '-x'
                elif num[-2] > 0:
                    result += strfNumber(num[-2]) + 'x'
                elif num[len(num) - 1 - i] < 0:
                    result += '-' + strfNumber(abs(num[-2])) + 'x'

        elif i == 1 and i != len(num) - 1:
            if num[-2] == 1:
                result += ' + x'
            elif num[-2] == -1:
                result += ' - x'
            elif num[-2] > 0:
                result += ' + ' + strfNumber(num[-2]) + 'x'
            elif num[len(num) - 1 - i] < 0:
                result += ' - ' + strfNumber(abs(num[-2])) + 'x'

        elif i == 0:
            if num[-1] > 0:
                result += ' + ' + strfNumber(num[-1])
            elif num[-1] < 0:
                result += ' - ' + strfNumber(abs(num[-1]))

        else:
            if num[len(num) - 1 - i] == 1:
                result += ' + ' + 'x^{' + str(i) + '}'
            elif num[len(num) - 1 - i] == -1:
                result += ' - ' + 'x^{' + str(i) + '}'
            elif num[len(num) - 1 - i] > 0:
                result += ' + ' + strfNumber(
                    num[len(num) - 1 - i]) + 'x^{' + str(i) + '}'
            elif num[len(num) - 1 - i] < 0:
                result += ' - ' + strfNumber(abs(
                    num[len(num) - 1 - i])) + 'x^{' + str(i) + '}'
    return result + ' = 0'
Exemple #3
0
 def Degree_5(self):
     if self.a == 0:
         Polynomial(self.b, self.c, self.d, self.e, self.f, 0).Degree_4()
     else:
         self.Generate_EQN(self.a, self.b, self.c, self.d, self.e, self.f)
         self.eqn = f'{self.a}x^5 + {self.b}x^4 + {self.c}x^3 + {self.d}x^2 + {self.e}x + {self.f} = 0'
         solve = Solve(self.eqn, 0)
         solve.Solve()
         self.result.append(strfNumber(solve.x))
         factor = horner([self.a, self.b, self.c, self.d, self.e, self.f],
                         solve.x)
         rest_x = Polynomial(factor[0], factor[1], factor[2], factor[3],
                             factor[4], 0)
         rest_x.Degree_4()
         for x in rest_x.result:
             self.result.append(x)
Exemple #4
0
def calc():
    equation = ''
    result = ''
    show = ''
    if request.method == 'POST':
        equation = request.form.get('equation')
        result = ReplaceSymbol(equation, 0)
        if request.form.get('x') != None:
            x = eval(request.form.get('x'))
            result = ReplaceSymbol(equation, 0).replace('x', str(x))

        if 'x' in result:
            return render_template('calc.html', equation = equation, x = '', result = (show, ''))
        show = ReplaceSymbol(equation, 1)
        result = strfNumber(eval(result))
    return render_template('calc.html', equation = equation, result = (show, result))
Exemple #5
0
    def Degree_4(self):
        if self.a == 0:
            Polynomial(self.b, self.c, self.d, self.e, 0, 0).Degree_3()
        else:
            self.eqn = Generate_EQN(self.a, self.b, self.c, self.d, self.e)
            # t^4 + at^2 + bt + c = 0
            a = (-3 * self.b**2 + 8 * self.a * self.c) / (8 * self.a**2)
            b = (2 * self.b**3 - 8 * self.a * self.b * self.c +
                 16 * self.a**2 * self.d) / (16 * self.a**3)
            c = (-3 * self.b**4 + 16 * self.a * self.b**2 * self.c -
                 64 * self.a**2 * self.b * self.d +
                 256 * self.a**3 * self.e) / (256 * self.a**4)

            solve_m = Polynomial(8, -4 * a, -8 * c, 4 * a * c - b**2, 0,
                                 0)  #8m^3 - 4am^2 - 8cm + 4ac - b^2 = 0
            solve_m.Degree_3()
            m = eval(solve_m.result[0])
            i = 1
            while (2 * m - a) == 0 and i < len(solve_m.result):
                m = eval(solve_m.result[i])
                i += 1

            list_t1 = Polynomial(1, -(2 * m - a)**0.5,
                                 m + b / (2 * (2 * m - a)**0.5), 0, 0, 0)
            list_t2 = Polynomial(1, (2 * m - a)**0.5,
                                 m - b / (2 * (2 * m - a)**0.5), 0, 0, 0)

            list_t = []
            for j in [list_t1, list_t2]:
                j.Degree_2()
                for i in j.result:
                    list_t.append(str(i))

            for i in list_t:
                if 'i' not in i:
                    x = round(eval(i) - self.b / (4 * self.a), 14)
                    self.result.append(x)
                else:
                    classify = i.split(' ')
                    classify[0] = strfNumber(
                        round(eval(classify[0]) - self.b / (4 * self.a), 14))
                    x = ' '.join(classify)
                    self.result.append(x)
Exemple #6
0
    def Degree_2(self):
        if self.a == 0:
            self.eqn = Generate_EQN(self.b, self.c)
            poly = Polynomial(self.b, self.c, 0, 0, 0, 0)
            poly.Degree_1()
            self.result = poly.result
        else:
            self.eqn = Generate_EQN(self.a, self.b, self.c)
            common_deno = lcd(frac(self.a), frac(self.b), frac(self.c))
            a, b, c = self.a * common_deno, self.b * common_deno, self.c * common_deno
            if a < 0:
                a, b, c = -a, -b, -c
            delta = b**2 - 4 * a * c
            self.hts = '$$ {' + self.eqn + '} $$'

            if delta == 0:
                x = strfNumber(-b / (2 * a))
                self.result.append(x)
                self.hts += r'$$ {\Leftrightarrow (x ' if (
                    self.a == 1) else r'$$ {\Leftrightarrow ' + strfNumber(
                        frac(self.a)) + '(x '
                self.hts += '+' if b * a > 0 else ''
                self.hts += strfNumber(b / (2 * a)) + ')^{2} = 0} $$'
                self.hts += r'$$ {\Leftrightarrow x '
                self.hts += '+' if b * a > 0 else ''
                self.hts += strfNumber(b / (2 * a)) + ' = 0} $$'
                self.hts += r'$$ {\Leftrightarrow x = ' + strfNumber(
                    -b / (2 * a)) + '} $$'
            else:
                if delta > 0:
                    if round(int(abs(delta)**0.5) - abs(delta)**0.5, 10) == 0:
                        x1 = strfNumber((-b + (delta)**(1 / 2)) / (2 * a))
                        x2 = strfNumber((-b - (delta)**(1 / 2)) / (2 * a))
                        self.hts += r'$$ {\Leftrightarrow (x ' if (
                            self.a
                            == 1) else r'$$ {\Leftrightarrow ' + strfNumber(
                                self.a) + '(x '
                        self.hts += '+' if '-' in x1 else '-'
                        self.hts += strfNumber(
                            abs((-b + (delta)**(1 / 2)) / (2 * a))) + ')(x '
                        self.hts += '+' if '-' in x2 else '-'
                        self.hts += strfNumber(
                            abs((-b - (delta)**(1 / 2)) /
                                (2 * a))) + ') = 0} $$'
                        self.hts += r'$$ {\Leftrightarrow \left[ \begin{array}{l} x_{1} = ' + x1 + r' \\ x_{2} =' + x2 + r' \end{array} \right.} $$'
                    else:
                        if common_deno != 1:
                            self.hts += r'$$ {\Leftrightarrow ' + strfNumber(
                                a / self.a) + '(' + self.eqn.split(
                                    '=')[0] + ') = 0} $$'
                            self.hts += r'$$ {\Leftrightarrow ' + Generate_EQN(
                                a, b, c) + '} $$'
                        self.hts += r'$$ {\Delta = b^{2} - 4ac = ' + strfNumber(
                            delta) + ' > 0} $$'
                        self.hts += r'$$ {x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{' + strfNumber(
                            -b) + r'\pm \sqrt{' + strfNumber(
                                delta) + r'}}{' + strfNumber(2 * a) + r'} = '
                        sgcd = int(SquaredGCD(delta)**0.5)
                        GCD = gcd(gcd(sgcd, 2 * a), b)
                        coefficient = ''
                        if abs(sgcd / GCD) != 1:
                            coefficient = strfNumber(abs(sgcd / GCD))

                        if GCD == 2 * a:
                            x1 = strfNumber(
                                -b / GCD
                            ) + '+' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}'
                            x2 = strfNumber(
                                -b / GCD
                            ) + '-' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}'
                            self.hts += strfNumber(
                                -b / GCD
                            ) + r'\pm' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}'
                        else:
                            x1 = r'\frac{' + strfNumber(
                                -b / GCD
                            ) + '+' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}}{' + strfNumber(
                                    2 * a / GCD) + '}'
                            x2 = r'\frac{' + strfNumber(
                                -b / GCD
                            ) + '-' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}}{' + strfNumber(
                                    2 * a / GCD) + '}'
                            self.hts += r'\frac{' + strfNumber(
                                -b / GCD
                            ) + r'\pm' + coefficient + r'\sqrt{' + strfNumber(
                                delta / (sgcd**2)) + '}}{' + strfNumber(
                                    2 * a / GCD) + '}'
                        self.hts += '} $$'
                else:
                    self.hts += r'$$ {\Delta = b^{2} - 4ac = ' + strfNumber(
                        delta) + ' < 0} $$'
                    self.hts += r'$$ {x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{' + strfNumber(
                        -b) + r'\pm \sqrt{' + strfNumber(
                            delta) + r'}}{' + strfNumber(2 * a) + r'} = '
                    if round(int(abs(delta)**0.5) - abs(delta)**0.5, 10) == 0:
                        imagine = strfNumber(((-delta)**(1 / 2)) / (2 * a))
                        imagine = '' if imagine == '1' else imagine
                    else:
                        sgcd = int(SquaredGCD(-delta)**0.5)
                        GCD = gcd(sgcd, 2 * a)
                        coefficient = ''
                        if abs(sgcd / GCD) != 1:
                            coefficient = strfNumber(abs(sgcd / GCD))
                        if GCD == 2 * a:
                            imagine = coefficient + r'\sqrt{' + strfNumber(
                                -delta / (sgcd**2)) + '}'
                        else:
                            imagine = r'\frac{' + coefficient + r'\sqrt{' + strfNumber(
                                -delta / (sgcd**2)) + '}}{' + strfNumber(
                                    2 * a / GCD) + '}'
                    if b != 0:
                        real = strfNumber(-b / (2 * a))
                        x1 = f"{real} + {imagine}i"
                        x2 = f"{real} - {imagine}i"
                        self.hts += real + r' \pm ' + imagine + 'i} $$ <br><div class="row justify-content-center" style="border:1px solid; margin: 0 60px; border-radius: 10px;"><div style="margin-top:15px;">Assuming &nbsp;</div> <div>$$ i $$</div><div style="margin-top:15px">&nbsp; is the imaginary unit</div></div>'
                    else:
                        x1 = f"{imagine}i"
                        x2 = f"-{imagine}i"
                        self.hts += r' \pm ' + imagine + 'i} $$ <br><div class="row justify-content-center" style="border:1px solid; margin: 0 60px; border-radius: 10px;"><div style="margin-top:15px;">Assuming &nbsp;</div> <div>$$ i $$</div><div style="margin-top:15px">&nbsp; is the imaginary unit</div></div>'

                self.result.append(x1)
                self.result.append(x2)
Exemple #7
0
    def Degree_3(self):
        if self.a == 0:
            Polynomial(self.b, self.c, self.d, 0, 0, 0).Degree_2()
        else:
            self.eqn = Generate_EQN(self.a, self.b, self.c, self.d)
            delta = self.b**2 - 3 * self.a * self.c
            if delta == 0:
                x = round(
                    (-self.b + cbrt(self.b**3 - 27 * self.a**2 * self.d)) /
                    (3 * self.a), 14)
                self.result.append(strfNumber(x))

                if x != 0:
                    factor = horner([self.a, self.b, self.c, self.d], x)
                    rest_x = Polynomial(factor[0], factor[1], factor[2], 0, 0,
                                        0)
                    rest_x.Degree_2()
                    for x in rest_x.result:
                        self.result.append(x)
            else:
                k = (9 * self.a * self.b * self.c - 2 * self.b**3 -
                     27 * self.a**2 * self.d) / (2 * (abs(delta**3))**0.5)
                if delta > 0:
                    if abs(k) < 1:
                        x1 = round(
                            (2 * delta**0.5 * cos(acos(k) / 3) - self.b) /
                            (3 * self.a), 14)
                        x2 = round((2 * delta**0.5 * cos(
                            (acos(k) - 2 * self.pi) / 3) - self.b) /
                                   (3 * self.a), 14)
                        x3 = round((2 * delta**0.5 * cos(
                            (acos(k) + 2 * self.pi) / 3) - self.b) /
                                   (3 * self.a), 14)
                        self.result.append(strfNumber(x1))
                        self.result.append(strfNumber(x2))
                        self.result.append(strfNumber(x3))
                    elif abs(k) == 1:
                        x1 = round((2 * delta**0.5 - self.b) / (3 * self.a),
                                   14)
                        x2 = round((-delta**0.5 - self.b) / (3 * self.a), 14)
                        self.result.append(strfNumber(x1))
                        self.result.append(strfNumber(x2))
                    else:
                        x = round((delta**0.5 * abs(k) / (3 * self.a * k)) *
                                  (cbrt(abs(k) + (k * k - 1)**0.5) +
                                   cbrt(abs(k) - (k * k - 1)**0.5)) - self.b /
                                  (3 * self.a), 14)
                        self.result.append(strfNumber(x))

                        factor = horner([self.a, self.b, self.c, self.d], x)
                        rest_x = Polynomial(factor[0], factor[1], factor[2], 0,
                                            0, 0)
                        rest_x.Degree_2()
                        for x in rest_x.result:
                            self.result.append(x)
                else:
                    x = round(
                        (abs(delta)**0.5 / (3 * self.a)) *
                        (cbrt(k +
                              (k * k + 1)**0.5) - cbrt((k * k + 1)**0.5 - k)) -
                        self.b / (3 * self.a), 14)
                    self.result.append(strfNumber(x))

                    factor = horner([self.a, self.b, self.c, self.d], x)
                    rest_x = Polynomial(factor[0], factor[1], factor[2], 0, 0,
                                        0)
                    rest_x.Degree_2()
                    for x in rest_x.result:
                        self.result.append(x)