Exemple #1
0
    def overlap_plot(self, receptor, ligand, T, name='overlap'):
        import _Volume
        vt1 = receptor.sum(dim=0)
        vt2 = ligand.sum(dim=0)
        _Volume.Volume2Xplor(vt1.cpu(), "receptor_%s.xplor" % name,
                             self.resolution)
        _Volume.Volume2Xplor(vt2.cpu(), "ligand_%s.xplor" % name,
                             self.resolution)

        dx = int(T[0])
        dy = int(T[1])
        dz = int(T[2])

        L = self.box_size

        def mabs(dx, dy, dz):
            import numpy as np
            return np.abs(dx), np.abs(dy), np.abs(dz)

        #all positive
        if dx > 0 and dy > 0 and dz > 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[dx:L, dy:L, dz:L] += vt2[0:L - dx, 0:L - dy, 0:L - dz]

        #one negative
        elif dx < 0 and dy > 0 and dz > 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[0:L - dx, dy:L, dz:L] += vt2[dx:L, 0:L - dy, 0:L - dz]
        elif dx > 0 and dy < 0 and dz > 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[dx:L, 0:L - dy, dz:L] += vt2[0:L - dx, dy:L, 0:L - dz]
        elif dx > 0 and dy > 0 and dz < 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[dx:L, dy:L, 0:L - dz] += vt2[0:L - dx, 0:L - dy, dz:L]

        #one positive
        elif dx < 0 and dy < 0 and dz > 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[0:L - dx, 0:L - dy, dz:L] += vt2[dx:L, dy:L, 0:L - dz]
        elif dx > 0 and dy < 0 and dz < 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[dx:L, 0:L - dy, 0:L - dz] += vt2[0:L - dx, dy:L, dz:L]
        elif dx < 0 and dy > 0 and dz < 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[0:L - dx, dy:L, 0:L - dz] += vt2[dx:L, 0:L - dy, dz:L]

        #all negative
        elif dx < 0 and dy < 0 and dz < 0:
            dx, dy, dz = mabs(dx, dy, dz)
            vt1[0:L - dx, 0:L - dy, 0:L - dz] += vt2[dx:L, dy:L, dz:L]

        _Volume.Volume2Xplor(vt1.cpu(), "%s.xplor" % name, self.resolution)
Exemple #2
0
	def runTest(self):
		volume_gpu = self.tc2v(self.coords, self.num_atoms_of_type, self.offsets)
		volume = volume_gpu.sum(dim=1).to(device='cpu', dtype=torch.float)
		
		if not os.path.exists('TestFig'):
			os.mkdir('TestFig')
		_Volume.Volume2Xplor(volume[0,:,:,:], "TestFig/total_b0_vtest_%d_%.1f.xplor"%(self.box_size, self.resolution), self.resolution)
Exemple #3
0
    def plot_double_volume(self, volume, name='volume'):
        import _Volume
        L = volume.size(1)
        halfL = int(L / 2)
        doubleL = L * 2

        output_volume = torch.zeros(doubleL,
                                    doubleL,
                                    doubleL,
                                    device='cpu',
                                    dtype=torch.float)
        output_volume[L - halfL:L + halfL, L - halfL:L + halfL,
                      L - halfL:L + halfL] = volume[0:L, 0:L, 0:L]

        _Volume.Volume2Xplor(output_volume, "%s.xplor" % name, self.resolution)
Exemple #4
0
    def plot_circ_volume(self, circ_volume, name='volume'):
        import _Volume
        L = circ_volume.size(1)
        L2 = int(L / 2)
        output_volume = torch.zeros(L, L, L, device='cpu', dtype=torch.float)

        # quadrants 1 <--> 8
        output_volume[:L2, :L2, :L2] = circ_volume[L2:L, L2:L, L2:L]
        output_volume[L2:L, L2:L, L2:L] = circ_volume[:L2, :L2, :L2]

        # quadrants 2 <--> 9
        output_volume[L2:L, :L2, :L2] = circ_volume[:L2, L2:L, L2:L]
        output_volume[:L2, L2:L, L2:L] = circ_volume[L2:L, :L2, :L2]

        # quadrants 3 <--> 5
        output_volume[L2:L, L2:L, :L2] = circ_volume[:L2, :L2, L2:L]
        output_volume[:L2, :L2, L2:L] = circ_volume[L2:L, L2:L, :L2]

        # quadrants 4 <--> 6
        output_volume[:L2, L2:L, :L2] = circ_volume[L2:L, :L2, L2:L]
        output_volume[L2:L, :L2, L2:L] = circ_volume[:L2, L2:L, :L2]

        _Volume.Volume2Xplor(output_volume, "%s.xplor" % name, self.resolution)
	inp1_border = torch.zeros(1, 1, v_size, v_size, v_size, dtype=torch.float, device='cuda')
	inp2 = torch.zeros(1, 1, v_size, v_size, v_size, dtype=torch.float, device='cuda')
	out2 = torch.zeros(1, 1, v_size, v_size, v_size, dtype=torch.float, device='cuda')
	fill_V1(np.array(r0), np.array(r1), 8, 5, inp1)
	get_boundary(inp1, inp1_border)
	
	fill_V2(np.array(l0), 5, inp2)
	
	# v = conv_numpy(inp1, inp2)	
	# xyz = (0, 0, 0)
	# image1 = np.concatenate((v[xyz[0],:,:], v[:,xyz[1],:], v[:,:,xyz[2]]), axis = 1)
	# plt.imshow(image1)
	# plt.colorbar()
	# plt.show()

	_Volume.Volume2Xplor(inp1.squeeze().cpu(), "receptor.xplor", 1.0)
	_Volume.Volume2Xplor(inp1_border.squeeze().cpu(), "receptor_border.xplor", 1.0)
	_Volume.Volume2Xplor(inp2.squeeze().cpu(), "ligand.xplor", 1.0)
	
	border_overlap = vc(inp1_border, inp2)
	bulk_overlap = vc(inp1, inp2)
	print(bulk_overlap.size(), torch.max(bulk_overlap), torch.min(bulk_overlap))
	out = border_overlap - 0.5*bulk_overlap
	_Volume.Volume2Xplor(out.squeeze().cpu(), "out.xplor", 1.0)

	score, r = get_argmax(out[0,0,:,:,:])
	print(r)
	r = list(r)
	if r[0]>=v_size:
		r[0] = -(2*v_size - r[0])
	if r[1]>=v_size:
	resolution = 1.0

	sequence = ['GGAGRRRGGWG']
	angles = torch.zeros(len(sequence), 7, len(sequence[0]), dtype=torch.double)
	angles[0,0,:] = -1.047
	angles[0,1,:] = -0.698
	angles[0,2:,:] = 110.4*np.pi/180.0
	a2c = Angles2Coords()
	c2cc = Coords2CenteredCoords(rotate=False, translate=False, box_size=box_size, resolution=resolution)
	c2tc = Coords2TypedCoords()
	tc2v = TypedCoords2Volume(box_size=box_size, resolution=resolution)
	
	protein, res_names, atom_names, num_atoms = a2c(angles, sequence)
	protein = c2cc(protein, num_atoms)
	coords, num_atoms_of_type, offsets = c2tc(protein, res_names, atom_names, num_atoms)
	volume = tc2v(coords.cuda(), num_atoms_of_type.cuda(), offsets.cuda())
	
	# print(volume.size())
	# for i in range(0, res_names.size(1)):
	# 	print(res_names.data[0,i,:].numpy().astype(dtype=np.uint8).tostring().split('\0')[0], atom_names.data[0,i,:].numpy().astype(dtype=np.uint8).tostring().split('\0')[0])

	for i in range(0,11):
		print(num_atoms_of_type.data[0,i], offsets.data[0,i])
	
	volume = volume.sum(dim=1).squeeze().cpu()
	print(volume.size())
	if not os.path.exists('TestFig'):
		os.mkdir('TestFig')
	_Volume.Volume2Xplor(volume.squeeze(), "TestFig/total_vtest_%d_%.1f.xplor"%(box_size, resolution), resolution)

	
def test_gradient():

    vc = VolumeConvolution()
    v_size = 30
    inp1 = torch.zeros(1,
                       1,
                       v_size,
                       v_size,
                       v_size,
                       dtype=torch.float,
                       device='cuda',
                       requires_grad=True)
    inp1tmp_p = torch.zeros(1,
                            1,
                            v_size,
                            v_size,
                            v_size,
                            dtype=torch.float,
                            device='cuda')
    inp1tmp_m = torch.zeros(1,
                            1,
                            v_size,
                            v_size,
                            v_size,
                            dtype=torch.float,
                            device='cuda')
    inp2 = torch.zeros(1,
                       1,
                       v_size,
                       v_size,
                       v_size,
                       dtype=torch.float,
                       device='cuda',
                       requires_grad=True)

    target = torch.zeros(1,
                         1,
                         2 * v_size,
                         2 * v_size,
                         2 * v_size,
                         dtype=torch.float,
                         device='cuda')
    fill_V2(np.array([12, 30, 50]), 5, target)

    r0 = [20, 15, 15]
    r1 = [23, 15, 7]
    l0 = [7, 24, 7]
    fill_V1(np.array(r0), np.array(r1), 8, 5, inp1)
    fill_V2(np.array(l0), 5, inp2)

    _Volume.Volume2Xplor(inp1.squeeze().cpu(), "receptor.xplor", 1.0)
    _Volume.Volume2Xplor(inp2.squeeze().cpu(), "ligand.xplor", 1.0)

    out = vc(inp1, inp2)
    E = torch.sum((out - target) * (out - target))
    # E = torch.sum(torch.abs(out-target))
    # E = out[:,:,8,40,0] + out[:,:,10,30,25]
    E.backward()

    back_grad_x0 = torch.zeros(inp2.grad.size(),
                               dtype=torch.float,
                               device='cpu').copy_(inp2.grad)

    print("Grad max min", torch.max(back_grad_x0), torch.min(back_grad_x0))
    _Volume.Volume2Xplor(back_grad_x0[0, 0, :, :, :], "grad_conv.xplor", 1.00)

    num_grads = []
    an_grads = []
    for j in range(0, v_size):
        x = j
        y = 7
        z = 7
        dx = 0.1
        inp1tmp_p.copy_(inp2)
        inp1tmp_m.copy_(inp2)
        inp1tmp_p[0, 0, x, y, z] += dx
        inp1tmp_m[0, 0, x, y, z] -= dx

        # out1_p = vc(inp1tmp_p, inp2)
        # out1_m = vc(inp1tmp_m, inp2)
        out1_p = vc(inp1, inp1tmp_p)
        out1_m = vc(inp1, inp1tmp_m)
        E1_p = torch.sum((out1_p - target) * (out1_p - target))
        E1_m = torch.sum((out1_m - target) * (out1_m - target))
        # E1_p = torch.sum(torch.abs(out1_p-target))
        # E1_m = torch.sum(torch.abs(out1_m-target))
        # E1 = (out1[:,:,8,40,0] + out1[:,:,10,30,25])
        dy_dx = (E1_p.item() - E1_m.item()) / (2 * dx)

        num_grads.append(dy_dx)
        an_grads.append(back_grad_x0[0, 0, x, y, z].item())

    fig = plt.figure()
    plt.plot(num_grads, 'r.-', label='num grad')
    plt.plot(an_grads, 'bo', label='an grad')
    plt.legend()
    plt.savefig('TestFig/test_backward.png')
Exemple #8
0
    labels = labels.squeeze()
    print(receptor[0])
    print(ligand[0])
    print(labels[0])
    print(labels)

    vt1 = volume1[0, :, :, :, :].squeeze()
    vt2 = volume2[0, :, :, :, :].squeeze()
    vt1 = vt1.sum(dim=0)
    vt2 = vt2.sum(dim=0)

    dx = int(dT[0, 0])
    dy = int(dT[0, 1])
    dz = int(dT[0, 2])

    _Volume.Volume2Xplor(vt1.cpu(), "receptor.xplor", 1.5)
    _Volume.Volume2Xplor(vt2.cpu(), "ligand.xplor", 1.5)

    print(dx, dy, dz)
    L = 80

    def mabs(dx, dy, dz):
        import numpy as np
        return np.abs(dx), np.abs(dy), np.abs(dz)

    #all positive
    if dx > 0 and dy > 0 and dz > 0:
        dx, dy, dz = mabs(dx, dy, dz)
        vt1[dx:L, dy:L, dz:L] += vt2[0:L - dx, 0:L - dy, 0:L - dz]

    #one negative
Exemple #9
0
    angles.data[:, 0, :] = -1.047
    angles.data[:, 1, :] = -0.698
    angles.data[:, 2:, :] = 110.4 * np.pi / 180.0

    #Converting angles to coordinates
    coords, res_names, atom_names, num_atoms = a2c(angles, sequences)

    #Translating the structure to fit inside the volume
    translation = torch.tensor([[60, 60, 60]],
                               dtype=torch.double,
                               device='cpu')
    coords = translate(coords, translation, num_atoms)

    #Converting to typed coords manually
    #We need dimension 1 equal to 11, because right now 11 atom types are implemented and
    #this layer expects 11 offsets and 11 num atoms of type per each structure
    coords = coords.to(dtype=torch.double, device='cuda')
    num_atoms_of_type = torch.zeros(1, 11, dtype=torch.int, device='cuda')
    num_atoms_of_type.data[0, 0] = num_atoms.data[0]
    offsets = torch.zeros(1, 11, dtype=torch.int, device='cuda')
    offsets.data[:, 1:] = num_atoms.data[0]

    #Projecting to volume
    tc2v = Volume.TypedCoords2Volume(box_size=120)
    volume = tc2v(coords, num_atoms_of_type, offsets)

    #Saving the volume to a file, we need to sum all the atom types, because
    #Volume2Xplor currently accepts only 3d volumes
    volume = volume.sum(dim=1).to(device='cpu').squeeze()
    _Volume.Volume2Xplor(volume, "volume.xplor")
	#Generating protein and initial volume
	protein, res_names, atom_names, num_atoms = a2c(angles, sequence)
	protein = c2cc(protein, num_atoms)
	coords, num_atoms_of_type, offsets = c2tc(protein, res_names, atom_names, num_atoms)
	volume = tc2v(coords.cuda(), num_atoms_of_type.cuda(), offsets.cuda())

	#Rotating protein
	center = torch.zeros(len(sequence), 3, dtype=torch.double, device='cpu').fill_((box_size - 0.5)*resolution/2.0)
	centered_coords = translate(coords, -center, num_atoms)
	rotated_centered_coords = rotate(centered_coords, R, num_atoms)
	rotated_coords = translate(rotated_centered_coords, center, num_atoms)
	#Reprojecting protein
	volume_protRot = tc2v(rotated_coords.cuda(), num_atoms_of_type.cuda(), offsets.cuda())

	#Rotating volume	
	volume_rot = volume_rotate(volume, R.to(dtype=torch.float, device='cuda'))
	
	err = torch.sum(torch.abs(volume_protRot - volume_rot))/torch.sum(volume_rot)
	print(err)
	
	volume = volume.sum(dim=1).squeeze().cpu()
	volume_protRot = volume_protRot.sum(dim=1).squeeze().cpu()
	volume_rot = volume_rot.sum(dim=1).squeeze().cpu()


	
	if not os.path.exists('TestFig'):
		os.mkdir('TestFig')
	_Volume.Volume2Xplor(volume_protRot.squeeze(), "TestFig/total_vPRot_%d_%.1f.xplor"%(box_size, resolution), resolution)
	_Volume.Volume2Xplor(volume_rot.squeeze(), "TestFig/total_vRot_%d_%.1f.xplor"%(box_size, resolution), resolution)
	_Volume.Volume2Xplor(volume.squeeze(), "TestFig/total_v_%d_%.1f.xplor"%(box_size, resolution), resolution)
    angles = torch.zeros(len(sequence),
                         7,
                         len(sequence[0]),
                         dtype=torch.double)
    angles[0, 0, :] = -1.047
    angles[0, 1, :] = -0.698
    angles[0, 2:, :] = 110.4 * np.pi / 180.0
    a2c = Angles2Coords()
    c2cc = Coords2CenteredCoords()
    c2tc = Coords2TypedCoords()
    tc2v = TypedCoords2Volume()

    protein, res_names, atom_names, num_atoms = a2c(angles, sequence)
    protein = c2cc(protein, num_atoms)
    coords, num_atoms_of_type, offsets = c2tc(protein, res_names, atom_names,
                                              num_atoms)
    volume = tc2v(coords.cuda(), num_atoms_of_type.cuda(), offsets.cuda())

    # print(volume.size())
    # for i in range(0, res_names.size(1)):
    # 	print(res_names.data[0,i,:].numpy().astype(dtype=np.uint8).tostring().split('\0')[0], atom_names.data[0,i,:].numpy().astype(dtype=np.uint8).tostring().split('\0')[0])

    for i in range(0, 11):
        print(num_atoms_of_type.data[0, i], offsets.data[0, i])

    volume = volume.sum(dim=1).squeeze().cpu()
    print(volume.size())
    if not os.path.exists('TestFig'):
        os.mkdir('TestFig')
    _Volume.Volume2Xplor(volume.squeeze(), "TestFig/total_vtest.xplor")