Exemple #1
0
    def update_dict_profile_to_fit(self):
        [left_range, right_range] = self.bragg_edge_range

        o_selection = BraggEdgeSelectionTab(parent=self)
        [x0, y0, x1, y1] = o_selection.get_shrinking_roi_dimension()
        o_get = Get(parent=self)
        profile = o_get.profile_of_roi(x0=x0, y0=y0,
                                       x1=x1, y1=y1)

        yaxis = profile[left_range: right_range]

        all_x_axis = o_get.all_x_axis()
        index_array = all_x_axis['index'][0]
        tof_array = all_x_axis['tof'][0]
        lambda_array = all_x_axis['lambda'][0]

        index_selected = index_array[left_range: right_range]
        tof_selected = tof_array[left_range: right_range]
        lambda_selected = lambda_array[left_range: right_range]

        profile_to_fit = {'yaxis': yaxis,
                          'xaxis': {'index': index_selected,
                                    'tof': tof_selected,
                                    'lambda': lambda_selected},
                          }
        self.dict_profile_to_fit = profile_to_fit
Exemple #2
0
    def configuration(self):
        # bring file dialog to locate where the file will be saved
        base_folder = Path(self.parent.working_dir)
        directory = str(base_folder.parent)
        _export_folder = QFileDialog.getExistingDirectory(
            self.parent,
            directory=directory,
            caption="Select Output Folder",
            options=QFileDialog.ShowDirsOnly)

        if _export_folder:
            data, metadata = self.get_data_metadata_from_selection_tab()

            # collect initial selection size (x0, y0, width, height)
            o_get = Get(parent=self.parent)
            [x0, y0, x1, y1, width, height] = o_get.selection_roi_dimension()

            name_of_ascii_file = ExportHandler.makeup_name_of_profile_ascii_file(
                base_name=str(base_folder.name),
                export_folder=_export_folder,
                x0=x0,
                y0=y0,
                width=width,
                height=height)

            make_ascii_file(metadata=metadata,
                            data=data,
                            output_file_name=name_of_ascii_file,
                            dim='1d')

            self.parent.ui.statusbar.showMessage(
                "{} has been created!".format(name_of_ascii_file),
                10000)  # 10s
            self.parent.ui.statusbar.setStyleSheet("color: green")
Exemple #3
0
	def update_roi_labels(self):
		[global_left_range, global_right_range] = self.parent.bragg_edge_range
		[left_range, right_range] = list(self.parent.fitting_peak_ui.getRegion())

		o_get = Get(parent=self.parent)
		x_axis_selected = o_get.x_axis_checked()
		xaxis_dict = self.parent.fitting_input_dictionary['xaxis']
		xaxis_index, _ = xaxis_dict[x_axis_selected]
		[left_xaxis_index, right_xaxis_index] = [global_left_range, global_right_range]

		xaxis = xaxis_index[left_xaxis_index: right_xaxis_index]

		left_index = find_nearest_index(array=xaxis, value=left_range)
		right_index = find_nearest_index(array=xaxis, value=right_range)

		xaxis_in_selected_axis = self.parent.fitting_input_dictionary['xaxis'][x_axis_selected][0][
		                         global_left_range: global_right_range]
		real_left_value = xaxis_in_selected_axis[left_index]
		real_right_value = xaxis_in_selected_axis[right_index]
		if x_axis_selected == 'lambda':
			str_format = "{:02f}"
		elif x_axis_selected == 'tof':
			str_format = "{:04.2f}"
		else:
			str_format = "{}"
		real_left_value = str_format.format(real_left_value)
		real_right_value = str_format.format(real_right_value)

		units = Get.units(name=x_axis_selected)
		self.parent.ui.bragg_peak_range_from_value.setText(str(real_left_value))
		self.parent.ui.bragg_peak_range_to_value.setText(str(real_right_value))
		self.parent.ui.from_bragg_peak_range_units.setText(units)
		self.parent.ui.to_bragg_peak_range_units.setText(units)
Exemple #4
0
    def update_selection_plot(self):
        self.parent.ui.profile.clear()
        o_get = Get(parent=self.parent)
        x_axis, x_axis_label = o_get.x_axis()
        max_value = self.parent.ui.profile_of_bin_size_slider.maximum()
        roi_selected = max_value - self.parent.ui.profile_of_bin_size_slider.value(
        )

        y_axis = self.parent.fitting_input_dictionary['rois'][roi_selected][
            'profile']

        self.parent.ui.profile.plot(x_axis,
                                    y_axis,
                                    pen=(self.parent.shrinking_roi_rgb[0],
                                         self.parent.shrinking_roi_rgb[1],
                                         self.parent.shrinking_roi_rgb[2]))
        self.parent.ui.profile.setLabel("bottom", x_axis_label)
        self.parent.ui.profile.setLabel("left", 'Mean transmission')

        # full region
        y_axis = self.parent.fitting_input_dictionary['rois'][0]['profile']
        self.parent.ui.profile.plot(x_axis,
                                    y_axis,
                                    pen=(self.parent.selection_roi_rgb[0],
                                         self.parent.selection_roi_rgb[1],
                                         self.parent.selection_roi_rgb[2]))
Exemple #5
0
    def bragg_edge_range_changed(self):
        [left_range, right_range] = list(self.bragg_edge_range_ui.getRegion())
        o_get = Get(parent=self)
        x_axis, _ = o_get.x_axis()

        left_index = find_nearest_index(array=x_axis, value=left_range)
        right_index = find_nearest_index(array=x_axis, value=right_range)

        self.bragg_edge_range = [left_index, right_index]
Exemple #6
0
 def add_profile_to_dict_of_all_regions(self, dict_regions=None):
     for _key in dict_regions.keys():
         current_region = dict_regions[_key]
         x0 = current_region['x0']
         y0 = current_region['y0']
         width = current_region['width']
         height = current_region['height']
         o_get = Get(parent=self)
         profile = o_get.profile_of_roi(x0=x0, y0=y0,
                                        x1=x0 + width,
                                        y1=y0 + height)
         current_region['profile'] = profile
Exemple #7
0
    def update_vertical_line_in_profile_plot(self):
        o_get = Get(parent=self)
        x_axis, x_axis_label = o_get.x_axis()

        bragg_edge_range = [x_axis[self.bragg_edge_range[0]],
                            x_axis[self.bragg_edge_range[1]]]

        if self.bragg_edge_range_ui:
            self.ui.profile.removeItem(self.bragg_edge_range_ui)
        self.bragg_edge_range_ui = pg.LinearRegionItem(values=bragg_edge_range,
                                                       orientation=None,
                                                       brush=None,
                                                       movable=True,
                                                       bounds=None)
        self.bragg_edge_range_ui.sigRegionChanged.connect(self.bragg_edge_range_changed)
        self.bragg_edge_range_ui.setZValue(-10)
        self.ui.profile.addItem(self.bragg_edge_range_ui)
Exemple #8
0
    def get_data_metadata_from_selection_tab(self):
        base_folder = Path(self.parent.working_dir)
        o_get = Get(parent=self.parent)

        index_axis, _ = o_get.specified_x_axis(xaxis='index')
        tof_axis, _ = o_get.specified_x_axis(xaxis='tof')
        lambda_axis, _ = o_get.specified_x_axis('lambda')
        fitting_peak_range = self.parent.bragg_edge_range
        distance_detector_sample = str(
            self.parent.ui.distance_detector_sample.text())
        detector_offset = str(self.parent.ui.detector_offset.text())
        kropff_fitting_values = self.collect_all_kropff_fitting_values()
        march_dollase_fitting_values = self.collect_all_march_dollase_fitting_values(
        )

        dict_regions = o_get.all_russian_doll_region_full_infos()
        metadata = ExportHandler.make_metadata(
            base_folder=base_folder,
            fitting_peak_range=fitting_peak_range,
            dict_regions=dict_regions,
            distance_detector_sample=distance_detector_sample,
            detector_offset=detector_offset,
            kropff_fitting_values=kropff_fitting_values,
            march_dollase_fitting_values=march_dollase_fitting_values)
        self.add_fitting_infos_to_metadata(metadata)

        metadata.append("#")
        metadata.append(
            "#File Index, TOF(micros), lambda(Angstroms), ROIs (see above)")
        data = ExportHandler.format_data(col1=index_axis,
                                         col2=tof_axis,
                                         col3=lambda_axis,
                                         dict_regions=dict_regions)

        return data, metadata
Exemple #9
0
    def fit_that_selection_pushed_by_program(self, initialize_region=True):
        o_get = Get(parent=self)
        x_axis = o_get.all_x_axis()
        dict_regions = o_get.all_russian_doll_region_full_infos()

        o_init = PeakFittingInitialization(parent=self)
        fitting_input_dictionary = o_init.fitting_input_dictionary(nbr_rois=len(dict_regions))
        o_init.set_top_keys_values(fitting_input_dictionary,
                                   {'xaxis': x_axis,
                                    'bragg_edge_range': self.bragg_edge_range})
        self.append_dict_regions_to_fitting_input_dictionary(dict_regions, fitting_input_dictionary)

        # fitting_input_dictionary['xaxis'] = x_axis
        # fitting_input_dictionary['bragg_edge_range'] = self.bragg_edge_range

        self.fitting_input_dictionary = fitting_input_dictionary

        o_kropff = Kropff(parent=self)
        o_kropff.reset_all_table()

        o_march = MarchDollase(parent=self)
        o_march.reset_table()

        if initialize_region:
            self.initialize_default_peak_regions()
        else:
            if self.fitting_procedure_started['kropff']:
                o_kropff.fill_table_with_fitting_information()
        o_march.fill_tables_with_fitting_information()

        if initialize_region:
            o_march_fitting = MarchDollaseFittingJobHandler(parent=self)
            o_march_fitting.initialize_fitting_input_dictionary()

        self.ui.tabWidget.setTabEnabled(1, True)
        self.ui.actionExport.setEnabled(True)
        self.select_first_row_of_all_fitting_table()
Exemple #10
0
    def update_selection_profile_plot(self):

        if self.parent.is_file_imported:
            self.update_selection_plot()
            self.parent.update_vertical_line_in_profile_plot()

        else:
            o_get = Get(parent=self.parent)
            x_axis, x_axis_label = o_get.x_axis()
            self.parent.ui.profile.clear()

            # large selection region
            [x0, y0, x1, y1, _, _] = o_get.selection_roi_dimension()
            profile = o_get.profile_of_roi(x0, y0, x1, y1)
            x_axis, y_axis = check_size(x_axis=x_axis, y_axis=profile)
            self.parent.ui.profile.plot(x_axis,
                                        y_axis,
                                        pen=(self.parent.selection_roi_rgb[0],
                                             self.parent.selection_roi_rgb[1],
                                             self.parent.selection_roi_rgb[2]))

            # shrinkable region
            shrinking_roi = self.get_coordinates_of_new_inside_selection_box()
            x0 = shrinking_roi['x0']
            y0 = shrinking_roi['y0']
            x1 = shrinking_roi['x1']
            y1 = shrinking_roi['y1']
            profile = o_get.profile_of_roi(x0, y0, x1, y1)
            x_axis, y_axis = check_size(x_axis=x_axis, y_axis=profile)
            self.parent.ui.profile.plot(x_axis,
                                        y_axis,
                                        pen=(self.parent.shrinking_roi_rgb[0],
                                             self.parent.shrinking_roi_rgb[1],
                                             self.parent.shrinking_roi_rgb[2]))
            self.parent.ui.profile.setLabel("bottom", x_axis_label)
            self.parent.ui.profile.setLabel("left", 'Mean transmission')

            # vertical line showing peak to fit
            bragg_edge_range = [
                x_axis[self.parent.bragg_edge_range[0]],
                x_axis[self.parent.bragg_edge_range[1]]
            ]

            self.parent.bragg_edge_range_ui = pg.LinearRegionItem(
                values=bragg_edge_range,
                orientation=None,
                brush=None,
                movable=True,
                bounds=None)
            self.parent.bragg_edge_range_ui.sigRegionChanged.connect(
                self.parent.bragg_edge_range_changed)
            self.parent.bragg_edge_range_ui.setZValue(-10)
            self.parent.ui.profile.addItem(self.parent.bragg_edge_range_ui)
Exemple #11
0
    def update_fitting_plot(self):
        self.parent.ui.fitting.clear()
        if self.parent.fitting_peak_ui:
            self.parent.ui.fitting.removeItem(self.parent.fitting_peak_ui)

        o_get = Get(parent=self.parent)
        xaxis_checked = o_get.x_axis_checked()
        xaxis = o_get.x_axis_data(x_axis_selected=xaxis_checked)
        xaxis_label = o_get.x_axis_label(x_axis_selected=xaxis_checked)

        o_table = TableHandler(
            table_ui=self.parent.ui.march_dollase_result_table)
        list_row_selected = o_table.get_rows_of_table_selected()

        if list_row_selected is None:
            return

        for row_selected in list_row_selected:
            yaxis = o_get.y_axis_data_of_selected_row(
                row_selected=row_selected)
            self.parent.ui.fitting.plot(xaxis,
                                        yaxis,
                                        pen=(self.parent.selection_roi_rgb[0],
                                             self.parent.selection_roi_rgb[1],
                                             self.parent.selection_roi_rgb[2]),
                                        symbol='o')
            self.parent.ui.fitting.setLabel("bottom", xaxis_label)
            self.parent.ui.fitting.setLabel("left", "Average transmission")

        if self.parent.ui.march_dollase_toolBox.currentIndex() == 0:
            move_bragg_peak_range = True
        else:
            move_bragg_peak_range = False

        peak_range = self.parent.march_dollase_fitting_range_selected
        local_peak_range = [xaxis[peak_range[0]], xaxis[peak_range[1]]]

        if self.parent.march_dollase_fitting_peak_ui:
            self.parent.ui.fitting.removeItem(
                self.parent.march_dollase_fitting_peak_ui)
        self.parent.march_dollase_fitting_peak_ui = pg.LinearRegionItem(
            values=local_peak_range,
            orientation=None,
            brush=None,
            movable=move_bragg_peak_range,
            bounds=None)
        self.parent.march_dollase_fitting_peak_ui.sigRegionChanged.connect(
            self.parent.march_dollase_fitting_range_changed)
        self.parent.march_dollase_fitting_peak_ui.setZValue(-10)
        self.parent.ui.fitting.addItem(
            self.parent.march_dollase_fitting_peak_ui)
Exemple #12
0
	def update_fitting_plot(self):
		self.parent.ui.fitting.clear()
		o_get = Get(parent=self.parent)
		part_of_fitting_dict = o_get.part_of_fitting_selected()
		name_of_page = part_of_fitting_dict['name_of_page']
		table_ui = part_of_fitting_dict['table_ui']

		o_table = TableHandler(table_ui=table_ui)
		list_row_selected = o_table.get_rows_of_table_selected()
		x_axis_selected = o_get.x_axis_checked()

		if list_row_selected is None:
			# first fitting tab where we only display the full data with bragg peak selection
			if self.parent.fitting_peak_ui:
				self.parent.ui.fitting.removeItem(self.parent.fitting_peak_ui)
			xaxis_dict = self.parent.fitting_input_dictionary['xaxis']
			xaxis_index, xaxis_label = xaxis_dict[x_axis_selected]
			[left_xaxis_index, right_xaxis_index] = self.parent.bragg_edge_range
			xaxis = xaxis_index[left_xaxis_index: right_xaxis_index]
			selected_roi = self.parent.fitting_input_dictionary['rois'][0]
			yaxis = selected_roi['profile']
			yaxis = yaxis[left_xaxis_index: right_xaxis_index]
			yaxis = -np.log(yaxis)
			self.parent.ui.fitting.plot(xaxis, yaxis,
			                            pen=(self.parent.selection_roi_rgb[0],
			                                 self.parent.selection_roi_rgb[1],
			                                 self.parent.selection_roi_rgb[2]),
			                            symbol='o')
			self.parent.ui.fitting.setLabel("bottom", xaxis_label)
			peak_range_index = self.parent.kropff_fitting_range['bragg_peak']
			if peak_range_index[0] is None:
				peak_range = self.parent.bragg_edge_range
			else:
				peak_range = [xaxis[peak_range_index[0]], xaxis[peak_range_index[1]]]

			if self.parent.fitting_peak_ui:
				self.parent.ui.fitting.removeItem(self.parent.fitting_peak_ui)
			self.parent.fitting_peak_ui = pg.LinearRegionItem(values=peak_range,
					                                          orientation=None,
					                                          brush=None,
					                                          movable=True,
					                                          bounds=None)
			self.parent.fitting_peak_ui.sigRegionChanged.connect(self.parent.fitting_range_changed)
			self.parent.fitting_peak_ui.setZValue(-10)
			self.parent.ui.fitting.addItem(self.parent.fitting_peak_ui)

		else:

			for row_selected in list_row_selected:

				selected_roi = self.parent.fitting_input_dictionary['rois'][row_selected]

				xaxis_dict = self.parent.fitting_input_dictionary['xaxis']
				[left_xaxis_index, right_xaxis_index] = self.parent.bragg_edge_range

				yaxis = selected_roi['profile']
				xaxis_index, xaxis_label = xaxis_dict[x_axis_selected]

				xaxis = xaxis_index[left_xaxis_index: right_xaxis_index]
				yaxis = yaxis[left_xaxis_index: right_xaxis_index]

				self.parent.ui.fitting.setLabel("bottom", xaxis_label)
				self.parent.ui.fitting.setLabel("left", 'Cross Section (arbitrary units)')
				yaxis = -np.log(yaxis)
				self.parent.ui.fitting.plot(xaxis, yaxis,
				                            pen=(self.parent.selection_roi_rgb[0],
				                                 self.parent.selection_roi_rgb[1],
				                                 self.parent.selection_roi_rgb[2]),
				                            symbol='o')

				peak_range_index = self.parent.kropff_fitting_range[name_of_page]
				if peak_range_index[0] is None:
					peak_range = self.parent.bragg_edge_range
				else:
					peak_range = [xaxis[peak_range_index[0]], xaxis[peak_range_index[1]]]

				if self.parent.fitting_peak_ui:
					self.parent.ui.fitting.removeItem(self.parent.fitting_peak_ui)
				self.parent.fitting_peak_ui = pg.LinearRegionItem(values=peak_range,
					                                              orientation=None,
					                                              brush=None,
					                                              movable=False,
					                                              bounds=None)
				self.parent.fitting_peak_ui.sigRegionChanged.connect(self.parent.fitting_range_changed)
				self.parent.fitting_peak_ui.setZValue(-10)
				self.parent.ui.fitting.addItem(self.parent.fitting_peak_ui)

				o_gui = GuiUtility(parent=self.parent)
				algo_name = o_gui.get_tab_selected(self.parent.ui.tab_algorithm).lower()

				if key_path_exists_in_dictionary(dictionary=self.parent.fitting_input_dictionary,
				                                 tree_key=['rois', row_selected, 'fitting', algo_name,
				                                           name_of_page, 'xaxis_to_fit']):

					# show fit only if tof scale selected
					if x_axis_selected == 'lambda':
						_entry = self.parent.fitting_input_dictionary['rois'][row_selected]['fitting'][algo_name][name_of_page]
						xaxis = _entry['xaxis_to_fit']
						yaxis = _entry['yaxis_fitted']
						yaxis = -np.log(yaxis)
						self.parent.ui.fitting.plot(xaxis, yaxis,
						                            pen=(self.parent.fit_rgb[0],
						                                 self.parent.fit_rgb[1],
						                                 self.parent.fit_rgb[2]))

				if peak_range_index[0] is None:
					self.parent.fitting_range_changed()

		self.parent.ui.fitting.setLabel("left", "Cross Section (arbitrary Units)")
Exemple #13
0
    def export_data_of_selected_rows(self):

        base_folder = Path(self.parent.working_dir)
        directory = str(base_folder.parent)
        _export_folder = QFileDialog.getExistingDirectory(
            self.parent, directory=directory, caption="Select Output Folder")

        if _export_folder:
            o_table = TableHandler(
                table_ui=self.parent.ui.march_dollase_result_table)
            list_of_rows_selected = o_table.get_rows_of_table_selected()

            str_list_of_rows_selected = [
                str(_row) for _row in list_of_rows_selected
            ]
            str_rows = "_".join(str_list_of_rows_selected)
            output_file_name = os.path.join(
                str(_export_folder),
                "march_dollase_result_fitting_row{}.txt".format(str_rows))

            fitting_input_dictionary = self.parent.fitting_input_dictionary

            o_get = Get(parent=self.parent)
            xaxis_index = o_get.x_axis_data(x_axis_selected='index')
            xaxis_tof = o_get.x_axis_data(x_axis_selected='tof')
            xaxis_lambda = o_get.x_axis_data(x_axis_selected='lambda')

            # metadata
            metadata = ["#Marche Dollase Result of Fitting"]
            is_advance_mode = self.parent.ui.march_dollase_advanced_mode_checkBox.isChecked(
            )
            metadata.append(
                "#Using advanced fitting mode: {}".format(is_advance_mode))

            data_label = "#image index, TOF(micros), Lambda(Angstroms)"
            temp_data = []
            for _row in list_of_rows_selected:
                _entry = fitting_input_dictionary['rois'][_row]['fitting'][
                    'march_dollase']
                _top_entry = fitting_input_dictionary['rois'][_row]
                _line = "#-> row {}: x0: {}, y0:{}, width:{}, height:{}, " \
                        "d_spacing:{}, sigma:{}, alpha:{}, a1:{}, " \
                        "a2:{}".format(_row,
                                                   _top_entry['x0'],
                                                   _top_entry['y0'],
                                                   _top_entry['width'],
                                       _top_entry['height'],
                                                   _entry['d_spacing'],
                                                   _entry['sigma'],
                                                   _entry['alpha'],
                                                   _entry['a1'],
                                                   _entry['a2'])
                if is_advance_mode:
                    _line += ", a5:{}, a6:{}".format(_entry['a5'],
                                                     _entry['a6'])
                metadata.append(_line)
                data_label += ", row {}".format(_row)

                temp_data.append(
                    o_get.y_axis_data_of_selected_row(row_selected=_row))

            metadata.append("#")
            metadata.append(data_label)

            # data
            data = []
            self.parent.debug_data = temp_data

            for _index in np.arange(len(xaxis_index)):
                str_data = "{}, {}, {}".format(xaxis_index[_index],
                                               xaxis_tof[_index],
                                               xaxis_lambda[_index])
                for _col_index in np.arange(len(list_of_rows_selected)):
                    str_data += ", {}".format(temp_data[_col_index][_index])
                data.append(str_data)

            make_ascii_file(metadata=metadata,
                            data=data,
                            output_file_name=output_file_name,
                            dim='1d')

            message = "{} has been created!".format(output_file_name)
            self.parent.ui.statusbar.showMessage(message, 10000)  # 10s
Exemple #14
0
    def prepare(self):
        self.initialize_fitting_input_dictionary()
        fitting_input_dictionary = self.parent.fitting_input_dictionary
        march_dollase_fitting_history_table = self.parent.march_dollase_fitting_history_table

        _is_advanced_mode = self.is_advanced_mode()
        if _is_advanced_mode:
            gmodel = Model(march_dollase_advanced_fit, missing='drop')
        else:
            # gmodel = Model(march_dollase_basic_fit, missing='drop')
            gmodel = Model(march_dollase_basic_fit, nan_policy='propagate')

        march_dollase_fitting_history_table = self.parent.march_dollase_fitting_history_table
        nbr_row_in_fitting_scenario = len(march_dollase_fitting_history_table)

        self.parent.ui.eventProgress.setValue(0)
        nbr_roi_row = len(fitting_input_dictionary['rois'].keys())
        self.parent.ui.eventProgress.setMaximum(nbr_roi_row)
        self.parent.ui.eventProgress.setVisible(True)

        def set_params(params_object, name_of_parameter, dict_entry,
                       parameter_flag):
            params_object.add(name_of_parameter,
                              value=np.float(dict_entry[name_of_parameter]),
                              vary=parameter_flag)

        def record_result_into_dict(entry_dict, result_object,
                                    name_of_parameter, parameter_flag):
            if parameter_flag:
                print(f"-> name_of_parameter: {name_of_parameter}")
                [value,
                 error] = result_object.get_value_err(tag=name_of_parameter)
                entry_dict[name_of_parameter] = value
                entry_dict[name_of_parameter + "_error"] = error
                print(f"   - value: {value}")
                print(f"   - error: {error}")

        for _roi_row in np.arange(nbr_roi_row):
            _entry = fitting_input_dictionary['rois'][_roi_row]['fitting'][
                'march_dollase']

            o_get = Get(parent=self.parent)
            xaxis = o_get.x_axis_data(x_axis_selected='lambda')
            yaxis = o_get.y_axis_data_of_selected_row(_roi_row)

            for _history_row, _row_entry in enumerate(
                    march_dollase_fitting_history_table):

                [
                    d_spacing_flag, sigma_flag, alpha_flag, a1_flag, a2_flag,
                    a5_flag, a6_flag
                ] = _row_entry

                if _is_advanced_mode:
                    a5_flag = _entry['a5']
                    a6_flag = _entry['a6']

                params = gmodel.make_params()

                set_params(params, 'd_spacing', _entry, d_spacing_flag)
                set_params(params, 'sigma', _entry, sigma_flag)
                set_params(params, 'alpha', _entry, alpha_flag)
                set_params(params, 'a1', _entry, a1_flag)
                set_params(params, 'a2', _entry, a2_flag)

                if _is_advanced_mode:
                    set_params(params, 'a5', _entry, a5_flag)
                    set_params(params, 'a6', _entry, a6_flag)

                print("Parameters pre-initialized:")
                if not d_spacing_flag:
                    print(f"- d_spacing: {_entry['d_spacing']}")
                if not sigma_flag:
                    print(f"- sigma: {_entry['sigma']}")
                if not alpha_flag:
                    print(f"- alpha: {_entry['alpha']}")
                if not a1_flag:
                    print(f"- a1: {_entry['a1']}")
                if not a2_flag:
                    print(f"- a2: {_entry['a2']}")

                # try:
                result = gmodel.fit(yaxis, params, t=xaxis)
                # except ValueError:
                # 	print(f"we are having an error row:{_roi_row}")

                print(f"in _history_row: {_history_row}")

                o_result = ResultValueError(result=result)
                record_result_into_dict(_entry, o_result, 'd_spacing',
                                        d_spacing_flag)
                record_result_into_dict(_entry, o_result, 'sigma', sigma_flag)
                record_result_into_dict(_entry, o_result, 'alpha', alpha_flag)
                record_result_into_dict(_entry, o_result, 'a1', a1_flag)
                record_result_into_dict(_entry, o_result, 'a2', a2_flag)

                if _is_advanced_mode:
                    record_result_into_dict(_entry, o_result, 'a5', a5_flag)
                    record_result_into_dict(_entry, o_result, 'a6', a6_flag)

            break  # for debugging only (stop only after first row)

            self.parent.ui.eventProgress.setValue(_roi_row + 1)
            QApplication.processEvents()

        self.parent.ui.eventProgress.setVisible(False)
        self.parent.fitting_procedure_started['march-dollase'] = True