Exemple #1
0
def jvp(v,z,n=1):
    """Return the nth derivative of Jv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError("n must be a non-negative integer.")
    if n == 0:
        return jv(v,z)
    else:
        return bessel_diff_formula(v, z, n, jv, -1)
Exemple #2
0
def jvp(v,z,n=1):
    """Return the nth derivative of Jv(z) with respect to z.
    """
    if not isinstance(n,types.IntType) or (n<0):
        raise ValueError("n must be a non-negative integer.")
    if n == 0:
        return jv(v,z)
    else:
        return bessel_diff_formula(v, z, n, jv, -1)
Exemple #3
0
def hyp0f1(v,z):
    """Confluent hypergeometric limit function 0F1.
    Limit as q->infinity of 1F1(q;a;z/q)
    """
    z = asarray(z)
    if issubdtype(z.dtype, complexfloating):
        arg = 2*sqrt(abs(z))
        num = where(z>=0, iv(v-1,arg), jv(v-1,arg))
        den = abs(z)**((v-1.0)/2)
    else:
        num = iv(v-1,2*sqrt(z))
        den = z**((v-1.0)/2.0)
    num *= gamma(v)
    return where(z==0,1.0,num/ asarray(den))
Exemple #4
0
def hyp0f1(v,z):
    """Confluent hypergeometric limit function 0F1.
    Limit as q->infinity of 1F1(q;a;z/q)
    """
    z = asarray(z)
    if issubdtype(z.dtype, complexfloating):
        arg = 2*sqrt(abs(z))
        num = where(z>=0, iv(v-1,arg), jv(v-1,arg))
        den = abs(z)**((v-1.0)/2)
    else:
        num = iv(v-1,2*sqrt(z))
        den = z**((v-1.0)/2.0)
    num *= gamma(v)
    return where(z==0,1.0,num/ asarray(den))