def RunTradingModelBuyHold(ticker: str,
                           startDate: str,
                           durationInYears: int,
                           totalFunds: int,
                           verbose: bool = False,
                           saveHistoryToFile: bool = True,
                           returndailyValues: bool = False):
    modelName = 'BuyHold' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                if tm.TraunchesAvailable(
                ) and tm.FundsAvailable() > currentPrices.high:
                    tm.PlaceBuy(ticker, currentPrices.low, True)
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
def RunTradingModelQLearn(ticker: str,
                          startDate: str,
                          durationInYears: int,
                          totalFunds: int,
                          verbose: bool = False,
                          saveHistoryToFile: bool = True,
                          returndailyValues: bool = False):
    Actions = [
        'Hold', 'BuyMarket', 'BuyAgressiveLeve10', 'BuyAgressiveLeve11',
        'BuyAgressiveLeve12', 'SellMarket', 'SellAgressiveLeve10',
        'SellAgressiveLeve11', 'SellAgressiveLeve12'
    ]
    modelName = 'QLearn' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                pass
                #do stuff
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
def RunTradingModelBuyHold(tm: TradingModel, ticker: str):
    currentPrices = tm.GetPriceSnapshot()
    if tm.verbose:
        print(currentPrices.snapShotDate, currentPrices.nextDayTarget)
    if not currentPrices == None:
        if tm.TranchesAvailable() > 0 and tm.FundsAvailable(
        ) > currentPrices.high:
            tm.PlaceBuy(ticker, currentPrices.low, True)
Exemple #4
0
def RunTradingModelBuyHold(tm: TradingModel, ticker: str):
    #Baseline model, buy and hold
    currentPrices = tm.GetPriceSnapshot()
    if tm.verbose:
        print(currentPrices.snapShotDate, currentPrices.nextDayTarget)
    if not currentPrices == None:
        for i in range(tm._tranchCount):
            available, buyPending, sellPending, longPositions = tm.PositionSummary(
            )
            if tm.TranchesAvailable() > 0 and tm.FundsAvailable(
            ) > currentPrices.high:
                tm.PlaceBuy(ticker, currentPrices.low, True)
            if available == 0: break
def RunTradingModelSeasonal(tm: TradingModel, ticker: str):
    SellMonth = 4  #April
    BuyMonth = 10  #October
    currentPrices = tm.GetPriceSnapshot()
    if not currentPrices == None:
        low = currentPrices.low
        high = currentPrices.high
        m = tm.currentDate.month
        available, buyPending, sellPending, longPositions = tm.PositionSummary(
        )
        if m >= SellMonth and m <= BuyMonth:
            if longPositions > 0: tm.PlaceSell(ticker, high, True)
        else:
            if available > 0 and tm.FundsAvailable() > high:
                tm.PlaceBuy(ticker, low, True)
Exemple #6
0
def RunTradingModelSeasonal(tm: TradingModel, ticker: str):
    #Buy in November, sell in May
    SellMonth = 5
    BuyMonth = 11
    currentPrices = tm.GetPriceSnapshot()
    if not currentPrices == None:
        low = currentPrices.low
        high = currentPrices.high
        m = tm.currentDate.month
        for i in range(tm._tranchCount):
            available, buyPending, sellPending, longPositions = tm.PositionSummary(
            )
            if m >= SellMonth and m <= BuyMonth:
                if longPositions > 0:
                    tm.PlaceSell(ticker, high, True)
                else:
                    break
            else:
                if available > 0 and tm.FundsAvailable() > high:
                    tm.PlaceBuy(ticker, low, True)
                else:
                    break
def RunTradingModelSeasonal(ticker: str,
                            startDate: str,
                            durationInYears: int,
                            totalFunds: int,
                            verbose: bool = False,
                            saveHistoryToFile: bool = True,
                            returndailyValues: bool = False):
    modelName = 'Seasonal' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                low = currentPrices.low
                high = currentPrices.high
                m = tm.currentDate.month
                available, buyPending, sellPending, longPositions = tm.GetPositionSummary(
                )
                if m >= 11 or m <= 4:  #Buy if Nov through April, else sell
                    if available > 0 and tm.FundsAvailable() > high:
                        tm.PlaceBuy(ticker, low, True)
                else:
                    if longPositions > 0: tm.PlaceSell(ticker, high, True)
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
Exemple #8
0
def RunTradingModelFirstHalfOfMonth(tm: TradingModel, ticker: str):
    #From Robert Ariel's observations, most gains are in the first half of the month
    BuyDay = 25  #Buy at the end of the month, after the 25th
    SellDay = 15  #Sell mid month, after the 15th
    currentPrices = tm.GetPriceSnapshot()
    if not currentPrices == None:
        low = currentPrices.low
        high = currentPrices.high
        d = tm.currentDate.day
        for i in range(tm._tranchCount):
            available, buyPending, sellPending, longPositions = tm.PositionSummary(
            )
            if d >= BuyDay or d < 3:
                if available > 0 and tm.FundsAvailable() > high:
                    tm.PlaceBuy(ticker, low, True)
                else:
                    break
            elif d >= SellDay:
                if longPositions > 0:
                    tm.PlaceSell(ticker, high, True)
                else:
                    break
            else:
                break
def RunTradingModelSwingTrend(ticker: str,
                              startDate: str,
                              durationInYears: int,
                              totalFunds: int,
                              verbose: bool = False,
                              saveHistoryToFile: bool = True,
                              returndailyValues: bool = False):
    #Give it a date range, some money, and a stock, it will execute a strategy and return the results
    #minDeviationToTrade = .025
    minActionableSlope = 0.002
    trendState = 'Flat'  #++,--,+-,-+,Flat
    prevTrendState = ''
    trendDuration = 0

    modelName = 'SwingTrend' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            p = tm.GetPriceSnapshot()
            if not p == None:
                available, buyPending, sellPending, longPositions = tm.GetPositionSummary(
                )
                maxPositions = available + buyPending + sellPending + longPositions
                targetBuy = p.nextDayTarget * (1 + p.fiveDayDeviation / 2)
                targetSell = p.nextDayTarget * (1 - p.fiveDayDeviation / 2)
                if p.longEMASlope >= minActionableSlope and p.shortEMASlope >= minActionableSlope:  #++	Positive trend, 70% long
                    trendState = '++'
                    if p.low > p.channelHigh:  #Over Bought
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell * (1.03), False,
                                         10)
                    elif p.low < p.channelLow:  #Still early
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy, True)
                        if trendDuration > 1 and buyPending < 3:
                            tm.PlaceBuy(ticker, targetBuy, True)
                    else:
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy, False)
                    if buyPending < 5 and longPositions < maxPositions:
                        tm.PlaceBuy(ticker, targetBuy, False)
                elif p.longEMASlope >= minActionableSlope and p.shortEMASlope < minActionableSlope:  #+- Correction or early downturn
                    trendState = '+-'
                    if p.low > p.channelHigh:  #Over Bought, try to get out
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Deep correction
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    else:
                        pass
                elif p.longEMASlope < -minActionableSlope and p.shortEMASlope < -minActionableSlope:  #-- Negative trend, aim for < 30% long
                    trendState = '--'
                    if p.high < p.channelLow:  #Over sold
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low, early down or up
                        pass
                    else:
                        if sellPending < 5 and longPositions > 3:
                            tm.PlaceSell(ticker, targetSell, True)
                            if trendDuration > 1:
                                tm.PlaceSell(ticker, targetSell, True)
                    if sellPending < 5 and longPositions > 3:
                        tm.PlaceSell(ticker, targetSell, False, 2)
                        tm.PlaceSell(ticker, targetSell, False, 2)
                elif p.longEMASlope < (
                        -1 * minActionableSlope) and p.shortEMASlope < (
                            -1 *
                            minActionableSlope):  #-+ Bounce or early recovery
                    trendState = '-+'
                    if p.high < p.channelLow:  #Over sold
                        pass
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low
                        if sellPending < 3 and longPositions > 3:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    else:
                        pass
                else:  #flat, aim for 70% long
                    trendState = 'Flat'
                    if p.low > p.channelHigh:  #Over Bought
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell * (1.03), False,
                                         10)
                    elif p.high < p.channelLow:  #Over sold
                        if buyPending < 3 and longPositions < 8:
                            tm.PlaceBuy(ticker, targetBuy, False, 5)
                        if buyPending < 4:
                            tm.PlaceBuy(ticker, targetBuy, False, 5)
                    else:
                        pass
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell, False, 5)
                    if buyPending < 3 and longPositions < maxPositions:
                        tm.PlaceBuy(ticker, targetBuy, False, 5)
                if trendState == prevTrendState:
                    trendDuration = trendDuration + 1
                else:
                    trendDuration = 0
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
Exemple #10
0
def RunTradingModelSwingTrend(tm: TradingModel, ticker: str):
    #Combines trending model with targeted "swing" buys, attempting to gain better deals by anticipating daily price fluctuations
    minActionableSlope = 0.002
    prevTrendState, trendDuration = tm.GetCustomValues()
    if prevTrendState == None: prevTrendState = ''
    if trendDuration == None: trendDuration = 0
    p = tm.GetPriceSnapshot()
    if not p == None:
        for i in range(tm._tranchCount):
            available, buyPending, sellPending, longPositions = tm.PositionSummary(
            )
            maxPositions = available + buyPending + sellPending + longPositions
            targetBuy = p.nextDayTarget * (1 + p.fiveDayDeviation / 2)
            targetSell = p.nextDayTarget * (1 - p.fiveDayDeviation / 2)
            if p.longEMASlope >= minActionableSlope and p.shortEMASlope >= minActionableSlope:  #++	Positive trend, 70% long
                trendState = '++'
                if p.low > p.channelHigh:  #Over Bought
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell * (1.03), False, 10)
                elif p.low < p.channelLow:  #Still early
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy, True)
                    if trendDuration > 1 and buyPending < 3:
                        tm.PlaceBuy(ticker, targetBuy, True)
                else:
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy, False)
                if buyPending < 5 and longPositions < maxPositions:
                    tm.PlaceBuy(ticker, targetBuy, False)
            elif p.longEMASlope >= minActionableSlope and p.shortEMASlope < minActionableSlope:  #+- Correction or early downturn
                trendState = '+-'
                if p.low > p.channelHigh:  #Over Bought, try to get out
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell, False, 3)
                elif p.low < p.channelLow and p.high > p.channelLow:  #Deep correction
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell, False, 3)
                else:
                    pass
            elif p.longEMASlope < -minActionableSlope and p.shortEMASlope < -minActionableSlope:  #-- Negative trend, aim for < 30% long
                trendState = '--'
                if p.high < p.channelLow:  #Over sold
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low, early down or up
                    pass
                else:
                    if sellPending < 5 and longPositions > 3:
                        tm.PlaceSell(ticker, targetSell, True)
                        if trendDuration > 1:
                            tm.PlaceSell(ticker, targetSell, True)
                if sellPending < 5 and longPositions > 3:
                    tm.PlaceSell(ticker, targetSell, False, 2)
                    tm.PlaceSell(ticker, targetSell, False, 2)
            elif p.longEMASlope < (
                    -1 * minActionableSlope) and p.shortEMASlope < (
                        -1 * minActionableSlope):  #-+ Bounce or early recovery
                trendState = '-+'
                if p.high < p.channelLow:  #Over sold
                    pass
                elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low
                    if sellPending < 3 and longPositions > 3:
                        tm.PlaceSell(ticker, targetSell, False, 3)
                else:
                    pass
            else:  #flat, aim for 70% long
                trendState = 'Flat'
                if p.low > p.channelHigh:  #Over Bought
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell * (1.03), False, 10)
                elif p.high < p.channelLow:  #Over sold
                    if buyPending < 3 and longPositions < 8:
                        tm.PlaceBuy(ticker, targetBuy, False, 5)
                    if buyPending < 4: tm.PlaceBuy(ticker, targetBuy, False, 5)
                else:
                    pass
                if sellPending < 3 and longPositions > 7:
                    tm.PlaceSell(ticker, targetSell, False, 5)
                if buyPending < 3 and longPositions < maxPositions:
                    tm.PlaceBuy(ticker, targetBuy, False, 5)
            if trendState == prevTrendState:
                trendDuration = trendDuration + 1
            else:
                trendDuration = 0
        tm.SetCustomValues(prevTrendState, trendDuration)
Exemple #11
0
def RunTradingModelTrending(tm: TradingModel, ticker: str):
    #This compares the slope of short term (6 day) and long term (18 day) exponential moving averages to determine buying opportunities.  Positive, negative, or flat slopes
    #trend states: ++,--,+-,-+,Flat
    minActionableSlope = 0.002
    prevTrendState, trendDuration = tm.GetCustomValues()
    if prevTrendState == None: prevTrendState = ''
    if trendDuration == None: trendDuration = 0
    p = tm.GetPriceSnapshot()
    if not p == None:
        available, buyPending, sellPending, longPositions = tm.PositionSummary(
        )
        maxPositions = available + buyPending + sellPending + longPositions
        targetBuy = p.nextDayTarget * (1 + p.fiveDayDeviation / 2)
        targetSell = p.nextDayTarget * (1 - p.fiveDayDeviation / 2)
        for i in range(tm._tranchCount):
            if p.longEMASlope >= minActionableSlope and p.shortEMASlope >= minActionableSlope:  #++	Positive trend, 100% long
                trendState = '++'
                if p.low > p.channelHigh:  #Over Bought
                    pass
                elif p.low < p.channelLow:  #Still early
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy, True)
                    if trendDuration > 1 and buyPending < 3:
                        tm.PlaceBuy(ticker, targetBuy, True)
                else:
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy, True)
                if buyPending < 5 and longPositions < maxPositions:
                    tm.PlaceBuy(ticker, targetBuy, False, 3)
            elif p.longEMASlope >= minActionableSlope and p.shortEMASlope < minActionableSlope:  #+- Correction or early downturn
                trendState = '+-'
                if p.low > p.channelHigh:  #Over Bought, try to get out
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell * .98, False, 3)
                elif p.low < p.channelLow and p.high > p.channelLow:  #Deep correction
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell, False, 3)
                else:
                    pass
            elif p.longEMASlope < -minActionableSlope and p.shortEMASlope < -minActionableSlope:  #-- Negative trend, get out
                trendState = '--'
                if p.high < p.channelLow:  #Over sold
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low, possible early up
                    pass
                else:
                    if trendDuration > 2:
                        if sellPending < 5 and longPositions > 5:
                            tm.PlaceSell(ticker, targetSell, True)
                        if sellPending < 5 and longPositions > 0:
                            tm.PlaceSell(ticker, targetSell, True)
                if sellPending < 5 and longPositions > 3:
                    tm.PlaceSell(ticker, targetSell, False, 2)
                    tm.PlaceSell(ticker, targetSell, False, 2)
            elif p.longEMASlope < (
                    -1 * minActionableSlope) and p.shortEMASlope < (
                        -1 * minActionableSlope):  #-+ Bounce or early recovery
                trendState = '-+'
                if p.high < p.channelLow:  #Over sold
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low
                    if buyPending < 3 and longPositions < 6:
                        tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                else:
                    pass
            else:  #flat, aim for 70% long
                trendState = 'Flat'
                if p.low > p.channelHigh:  #Over Bought
                    pass
                elif p.high < p.channelLow:  #Over sold
                    if buyPending < 3 and longPositions < 8:
                        tm.PlaceBuy(ticker, targetBuy, False, 5)
                    if buyPending < 4: tm.PlaceBuy(ticker, targetBuy, False, 5)
                else:
                    pass
                if buyPending < 3 and longPositions < maxPositions:
                    tm.PlaceBuy(ticker, targetBuy, False, 5)

        tm.SetCustomValues(trendState, trendDuration)
        if trendState == prevTrendState:
            trendDuration = trendDuration + 1
        else:
            trendDuration = 0
        tm.SetCustomValues(prevTrendState, trendDuration)
def RunTradingModelSwingTrend(tm: TradingModel, ticker: str):
    #Give it a date range, some money, and a stock, it will execute a strategy and return the results
    #minDeviationToTrade = .025
    minActionableSlope = 0.002
    prevTrendState, trendDuration = tm.GetCustomValues()
    if prevTrendState == None: prevTrendState = ''
    if trendDuration == None: trendDuration = 0
    p = tm.GetPriceSnapshot()
    if not p == None:
        available, buyPending, sellPending, longPositions = tm.PositionSummary(
        )
        maxPositions = available + buyPending + sellPending + longPositions
        targetBuy = p.nextDayTarget * (1 + p.fiveDayDeviation / 2)
        targetSell = p.nextDayTarget * (1 - p.fiveDayDeviation / 2)
        if p.longEMASlope >= minActionableSlope and p.shortEMASlope >= minActionableSlope:  #++	Positive trend, 70% long
            trendState = '++'
            if p.low > p.channelHigh:  #Over Bought
                if sellPending < 3 and longPositions > 7:
                    tm.PlaceSell(ticker, targetSell * (1.03), False, 10)
            elif p.low < p.channelLow:  #Still early
                if buyPending < 3 and longPositions < 6:
                    tm.PlaceBuy(ticker, targetBuy, True)
                if trendDuration > 1 and buyPending < 3:
                    tm.PlaceBuy(ticker, targetBuy, True)
            else:
                if buyPending < 3 and longPositions < 6:
                    tm.PlaceBuy(ticker, targetBuy, False)
            if buyPending < 5 and longPositions < maxPositions:
                tm.PlaceBuy(ticker, targetBuy, False)
        elif p.longEMASlope >= minActionableSlope and p.shortEMASlope < minActionableSlope:  #+- Correction or early downturn
            trendState = '+-'
            if p.low > p.channelHigh:  #Over Bought, try to get out
                if sellPending < 3 and longPositions > 7:
                    tm.PlaceSell(ticker, targetSell, False, 3)
            elif p.low < p.channelLow and p.high > p.channelLow:  #Deep correction
                if sellPending < 3 and longPositions > 7:
                    tm.PlaceSell(ticker, targetSell, False, 3)
            else:
                pass
        elif p.longEMASlope < -minActionableSlope and p.shortEMASlope < -minActionableSlope:  #-- Negative trend, aim for < 30% long
            trendState = '--'
            if p.high < p.channelLow:  #Over sold
                if buyPending < 3 and longPositions < 6:
                    tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
            elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low, early down or up
                pass
            else:
                if sellPending < 5 and longPositions > 3:
                    tm.PlaceSell(ticker, targetSell, True)
                    if trendDuration > 1:
                        tm.PlaceSell(ticker, targetSell, True)
            if sellPending < 5 and longPositions > 3:
                tm.PlaceSell(ticker, targetSell, False, 2)
                tm.PlaceSell(ticker, targetSell, False, 2)
        elif p.longEMASlope < (-1 * minActionableSlope) and p.shortEMASlope < (
                -1 * minActionableSlope):  #-+ Bounce or early recovery
            trendState = '-+'
            if p.high < p.channelLow:  #Over sold
                pass
            elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low
                if sellPending < 3 and longPositions > 3:
                    tm.PlaceSell(ticker, targetSell, False, 3)
            else:
                pass
        else:  #flat, aim for 70% long
            trendState = 'Flat'
            if p.low > p.channelHigh:  #Over Bought
                if sellPending < 3 and longPositions > 7:
                    tm.PlaceSell(ticker, targetSell * (1.03), False, 10)
            elif p.high < p.channelLow:  #Over sold
                if buyPending < 3 and longPositions < 8:
                    tm.PlaceBuy(ticker, targetBuy, False, 5)
                if buyPending < 4: tm.PlaceBuy(ticker, targetBuy, False, 5)
            else:
                pass
            if sellPending < 3 and longPositions > 7:
                tm.PlaceSell(ticker, targetSell, False, 5)
            if buyPending < 3 and longPositions < maxPositions:
                tm.PlaceBuy(ticker, targetBuy, False, 5)
        if trendState == prevTrendState:
            trendDuration = trendDuration + 1
        else:
            trendDuration = 0
        tm.SetCustomValues(prevTrendState, trendDuration)