Exemple #1
0
 def get_score(self,word,context):
 	## Get the loss given word, context pair and perform negative sampling
     objective = dy.logistic(((dy.transpose(self.context_embeddings[context]))*self.word_embeddings[word]))
     negative_sample = np.random.choice(self.context_size, self.num_sampled, replace=False, p=self.context_fre)
     for context_prime in negative_sample:
         objective *= dy.logistic(-((dy.transpose(self.context_embeddings[context_prime]))*self.word_embeddings[word]))
     loss = -dy.log(objective)
     return loss
Exemple #2
0
 def __call__(self, input_exp, hidden_exp, mask=None):
     # two kinds of dropouts
     if self.idrop > 0.:
         input_exp = dy.dropout(input_exp, self.idrop)
     input_exp_g = input_exp_t = input_exp
     hidden_exp_g = hidden_exp_t = hidden_exp["H"]
     if self.gdrop > 0.:
         input_exp_g = dy.cmult(input_exp, self.masks[0])
         hidden_exp_g = dy.cmult(hidden_exp_g, self.masks[1])
         input_exp_t = dy.cmult(input_exp, self.masks[2])
         hidden_exp_t = dy.cmult(hidden_exp_t, self.masks[3])
     rzt = dy.affine_transform([
         self.iparams["brz"], self.iparams["x2rz"], input_exp_g,
         self.iparams["h2rz"], hidden_exp_g
     ])
     rzt = dy.logistic(rzt)
     rt, zt = dy.pick_range(rzt, 0, self.n_hidden), BK.pick_range(
         rzt, self.n_hidden, 2 * self.n_hidden)
     h_reset = dy.cmult(rt, hidden_exp_t)
     ht = dy.affine_transform([
         self.iparams["bh"], self.iparams["x2h"], input_exp_t,
         self.iparams["h2h"], h_reset
     ])
     ht = dy.tanh(ht)
     hidden = dy.cmult(zt, hidden_exp["H"]) + dy.cmult(
         (1. - zt), ht)  # first one use original hh
     # mask: if 0 then pass through
     if mask is not None:
         mask_array = np.asarray(mask).reshape((1, -1))
         m1 = dy.inputTensor(mask_array, True)  # 1.0 for real words
         m0 = dy.inputTensor(1.0 - mask_array,
                             True)  # 1.0 for padding words (mask=0)
         hidden = hidden * m1 + hidden_exp["H"] * m0
     return {"H": hidden}
 def get_pointergen_probs(self, c_t, state, x_t, a_t, probs, src1):
     if not self.pointer_gen:
         return probs, 1.0
     unk_idx = self.tgt_vocab.str2int(UNK)
     p_gen = dy.logistic(
         self.ptr_w_c * c_t
         + self.ptr_w_s * dy.concatenate(list(state.s()))
         + self.ptr_w_x * x_t
     )
     gen_probs = probs * p_gen
     copy_probs = a_t * (1 - p_gen)
     copy_probs_update = []
     for i in gen_probs:
         copy_probs_update.append([i])
     for char, prob in zip(src1, copy_probs):
         cur_idx = self.tgt_vocab.str2int(self.src1_vocab.int2str(char))
         if cur_idx == unk_idx:
             continue
         if isinstance(cur_idx, int):
             copy_probs_update[cur_idx].append(prob)
         else:
             for idx in cur_idx:
                 copy_probs_update[idx].append(prob / len(cur_idx))
     sum_probs = dy.concatenate([dy.esum(exps) for exps in copy_probs_update])
     return sum_probs, p_gen.scalar_value()
Exemple #4
0
 def compute_output_layer(self, input):
     res = [input]
     for i, p in enumerate(self.parameters):
         W, b = dy.parameter(p[0]), dy.parameter(p[1])
         if i == len(self.parameters) - 1:
             res.append(dy.logistic(W * res[-1] + b))
         else:
             res.append(self.activation(W * res[-1] + b))
     return res
Exemple #5
0
    def __call__(self, x_embs):
        x_len = len(x_embs)

        # BiGRU
        hf = dy.concatenate_cols(
            self.fGRUBuilder.initial_state().transduce(x_embs))
        hb = dy.concatenate_cols(self.bGRUBuilder.initial_state().transduce(
            x_embs[::-1])[::-1])
        h = dy.concatenate([hf, hb])

        # Selective Gate
        hb_1 = dy.pick(hb, index=0, dim=1)
        hf_n = dy.pick(hf, index=x_len - 1, dim=1)
        s = dy.concatenate([hb_1, hf_n])

        # Selection
        sGate = dy.logistic(dy.colwise_add(self.Ws * h, self.Us * s + self.bs))
        hp = dy.cmult(h, sGate)

        return hp, hb_1
    def get_features_for_tagging(self, sentence, training):
        word_feats = [
            dy.affine_transform(
                [
                    self.feat_b,
                    self.feat_w,
                    dy.inputTensor(feats.reshape(self.featsize, 1)),
                ]
            )
            for chars, word, feats, tag in sentence
        ]
        zero_feats = [
            dy.inputTensor(np.zeros(shape=(FEAT_OUT_SIZE, 1)))
            for chars, word, feats, tag in sentence
        ]

        # Non-linear transform for soft gazetteer features
        if self.feat_func == "tanh":
            word_feats = [dy.tanh(feat) for feat in word_feats]
        elif self.feat_func == "relu":
            word_feats = [dy.rectify(feat) for feat in word_feats]

        # Soft gazetteer features at the LSTM level
        if self.lstm_feats:
            cur_feats = word_feats
        else:
            cur_feats = zero_feats
        word_reps = [
            dy.concatenate(
                [self.cnn.encode(chars, training), self.word_embeds[word], enc_feat]
            )
            for enc_feat, (chars, word, feats, tag) in zip(cur_feats, sentence)
        ]

        contexts = self.word_lstm.transduce(word_reps)

        # Soft gazetteer features at the CRF level
        if self.crf_feats:
            cur_feats = word_feats
        else:
            cur_feats = zero_feats

        features = [
            dy.affine_transform(
                [
                    self.context_to_emit_b,
                    self.context_to_emit_w,
                    dy.concatenate([context, feats]),
                ]
            )
            for context, feats in zip(contexts, cur_feats)
        ]
        t_features = [
            dy.reshape(
                dy.affine_transform(
                    [
                        self.context_to_trans_b,
                        self.context_to_trans_w,
                        dy.concatenate([context, feats]),
                    ]
                ),
                (self.num_tags, self.num_tags),
            )
            for context, feats in zip(contexts, cur_feats)
        ]

        # Autoencoder feature reconstruction
        if self.lstm_feats:
            feat_reconstruct = [
                dy.logistic(
                    dy.affine_transform(
                        [self.feat_reconstruct_b, self.feat_reconstruct_w, context]
                    )
                )
                for context in contexts
            ]
        else:
            feat_reconstruct = [
                dy.inputTensor(np.zeros(shape=(self.featsize,))) for context in contexts
            ]

        return features, t_features, feat_reconstruct