Exemple #1
0
 def log_likelihood(self):
     nzw, ndz, nz = self._num_zw, self._num_dz, self._num_z
     alpha = self.alpha
     beta = self.beta
     nd = np.sum(ndz, axis=1).astype(np.intc)
     # call c function via _lda.pyx
     return _lda._loglikelihood(nzw, ndz, nz, nd, alpha, beta)
Exemple #2
0
 def loglikelihood(self):
     """Calculate complete log likelihood, log p(w,z)
     Formula used is log p(w,z) = log p(w|z) + log p(z)
     """
     nd = np.sum(self.ndz, axis=1).astype(np.intc)
     return _lda._loglikelihood(self.nzw, self.ndz, self.nz, nd, self.alpha,
                                self.beta)
Exemple #3
0
    def loglikelihood(self):
        """Calculate complete log likelihood, log p(w,z)

        Formula used is log p(w,z) = log p(w|z) + log p(z)
        """
        nzw, ndz, nz = self.nzw_, self.ndz_, self.nz_
        alpha = self.alpha
        eta = self.eta
        nd = np.sum(ndz, axis=1).astype(np.intc)
        return _lda._loglikelihood(nzw, ndz, nz, nd, alpha, eta)
Exemple #4
0
 def loglikelihood(self):
     """Calculate complete log likelihood, log p(w,z)
     Formula used is log p(w,z) = log p(w|z) + log p(z)
     """
     nd = np.sum(self.ndz, axis=1).astype(np.intc)
     return _lda._loglikelihood(self.nzw, self.ndz, self.nz, nd, self.alpha, self.beta)
Exemple #5
0
 def loglikelihood_inference(self):
     """ Computes the log-likelihood using just the LDA part:
         log p(w,z) = log p(w|z) + log p(z)
     """
     return _lda._loglikelihood(self.nzw_, self.ndz_, self.nz_, self.nd_,
                                self.alpha, self.eta)