for ligand in ligands ] markercolors = ["k" for ligand in ligands] if len(x) > 1: scatter_plot_info(x, y, ligands, out_text_file) scatter_plot(x, y, args.xlabel, args.ylabel, out_figure_file, show_xy_axes=args.show_xy_axes, xerr=xerr, yerr=yerr, show_regression_line=True, show_diagonal_line=False, show_rmse=True, show_R=True, show_regression_line_eq=True, markers=markers, markersize=5, markercolors=markercolors, same_xy_scale=False, text_pos=[0.1, 0.7]) all_ligands = [ all_algdock_scores[scheme][ref_ligand].keys() for scheme in weighting_schemes for ref_ligand in SIX_YANK_SYSTEMS ] common_ligands = set(all_ligands[0]) unioned_ligands = set(all_ligands[0])
out_file = os.path.basename(data_file) + ".pdf" title = os.path.basename(data_file) if args.title: title = " vs ".join(title.split("_vs_")) else: title = None scatter_plot(x, y, args.xlabel, args.ylabel, out_file, show_xy_axes=True, xerr=None, yerr=None, x_logscale=False, y_logscale=False, show_regression_line=False, show_diagonal_line=False, show_rmse=True, show_R=True, show_regression_line_eq=True, markers=None, markersize=4, markercolors=None, same_xy_scale=False, integer_limits=False, text_pos=[0.1, 0.7], title=title)
y_errs.append(algdock_errors[ref_ligand][target_ligand]) ys = np.array(ys) y_errs = np.array(y_errs) * error_scales[i] / 2. dummy_ligands = ["abc" for _ in ys] scatter_plot_info(xs, ys, dummy_ligands, out_log) ylim = ylims[i] if ylim is not None: ylim = [float(s) for s in ylim.split("_")] scatter_plot(xs, ys, args.xlabel, args.ylabel, out_fig, show_xy_axes=True, yerr=y_errs, ylimits=ylim, show_regression_line=True, show_diagonal_line=False, show_rmse=True, show_R=True, show_regression_line_eq=True, markersize=4, same_xy_scale=False, text_pos=[0.1, 0.7]) print("DONE")
for target_ligand in target_ligands: ys.append(rbfes_without_cv[ref_ligand][target_ligand]) y_errs.append(rbfe_errors_without_cv[ref_ligand][target_ligand]) ys = np.array(ys) y_errs = np.array(y_errs) / 2. dummy_ligands = ["abc" for _ in ys] scatter_plot_info(xs, ys, dummy_ligands, "rmse_pearsonR_without_CV.dat") scatter_plot(xs, ys, args.xlabel, args.ylabel, "without_CV.pdf", show_xy_axes=True, xerr=x_errs, yerr=y_errs, show_regression_line=True, show_diagonal_line=False, show_rmse=True, show_R=True, show_regression_line_eq=True, markersize=4, same_xy_scale=False, text_pos=[0.1, 0.7]) # with CV ys = [] y_errs = [] for ref_ligand in ref_ligands: for target_ligand in target_ligands: ys.append(rbfes_with_cv[ref_ligand][target_ligand]) y_errs.append(rbfe_errors_with_cv[ref_ligand][target_ligand])