def setUpClass(cls):
        master_seed(SEED)

        Model = get_model('MnistCnnV2')
        model = Model()
        logger.info('Starting %s data container...', NAME)
        dc = DataContainer(DATASET_LIST[NAME], get_data_path())
        dc()
        cls.mc = ModelContainerPT(model, dc)
        cls.mc.load(MODEL_FILE)
        accuracy = cls.mc.evaluate(dc.x_test, dc.y_test)
        logger.info('Accuracy on test set: %f', accuracy)

        cls.attack = BIMContainer(
            cls.mc,
            eps=0.3,
            eps_step=0.1,
            max_iter=100,
            targeted=False)
def main():
    Model = get_model('MnistCnnV2')
    classifier = Model()

    dc = DataContainer(DATASET_LIST['MNIST'], get_data_path())
    dc()
    classifier_mc = ModelContainerPT(classifier, dc)
    classifier_mc.load(MODEL_FILE)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    print(f'Accuracy on test set: {accuracy}')

    attack = BIMContainer(classifier_mc,
                          eps=0.3,
                          eps_step=0.1,
                          max_iter=100,
                          targeted=False)

    adv_trainer = AdversarialTraining(classifier_mc, [attack])
    adv_trainer.fit(max_epochs=5, batch_size=128, ratio=0.1)
    discriminator = adv_trainer.get_def_model_container()
    print(discriminator.accuracy_test)
def main():
    data_name = 'MNIST'
    set_logging('advTraining', data_name, True, True)

    model_file = os.path.join('save', 'MnistCnnV2_MNIST_e50.pt')
    Model = get_model('MnistCnnV2')
    classifier = Model()

    dc = DataContainer(DATASET_LIST[data_name], get_data_path())
    dc()
    classifier_mc = ModelContainerPT(classifier, dc)
    classifier_mc.load(model_file)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    attack = BIMContainer(classifier_mc,
                          eps=0.3,
                          eps_step=0.1,
                          max_iter=100,
                          targeted=False)

    adv_trainer = AdversarialTraining(classifier_mc, [attack])
    # adv_trainer.fit(max_epochs=30, batch_size=128, ratio=0.1)
    # adv_trainer.save('AdvTrain_MnistCnnV2_MNIST', overwrite=True)

    file_name = os.path.join('save', 'AdvTrain_MnistCnnV2_MNIST.pt')
    adv_trainer.load(file_name)

    x = np.load(os.path.join('save', 'MnistCnnV2_MNIST_BIM_x.npy'),
                allow_pickle=False)
    y = np.load(os.path.join('save', 'MnistCnnV2_MNIST_BIM_y.npy'),
                allow_pickle=False)
    blocked_indices = adv_trainer.detect(x, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(x),
                'clean')

    adv = np.load(os.path.join('save', 'MnistCnnV2_MNIST_BIM_adv.npy'),
                  allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'BIM', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(adv),
                'BIM')

    adv = np.load(os.path.join('save', 'MnistCnnV2_MNIST_Carlini_adv.npy'),
                  allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'Carlini', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(adv),
                'Carlini')

    adv = np.load(os.path.join('save', 'MnistCnnV2_MNIST_DeepFool_adv.npy'),
                  allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'DeepFool', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(adv),
                'DeepFool')

    adv = np.load(os.path.join('save', 'MnistCnnV2_MNIST_FGSM_adv.npy'),
                  allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'FGSM', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(adv),
                'FGSM')

    adv = np.load(os.path.join('save', 'MnistCnnV2_MNIST_Saliency_adv.npy'),
                  allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'Saliency', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s', len(blocked_indices), len(adv),
                'Saliency')
def experiment(index, data_container, max_epochs, adv_file, res_file):
    # STEP 1: select data and model
    dname = data_container.name
    num_classes = data_container.num_classes
    num_features = data_container.dim_data[0]
    model = IrisNN(num_features=num_features,
                   hidden_nodes=num_features * 4,
                   num_classes=num_classes)
    distill_model = IrisNN(num_features=num_features,
                           hidden_nodes=num_features * 4,
                           num_classes=num_classes)

    # STEP 2: train models
    mc = ModelContainerPT(model, data_container)
    mc.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
    accuracy = mc.evaluate(data_container.x_test, data_container.y_test)
    logger.info('Accuracy on test set: %f', accuracy)
    adv_res = [accuracy]

    # STEP 3: generate adversarial examples
    # no more than 1000 samples are required
    x = data_container.x_test
    y = data_container.y_test
    # The test set has fixed size, 1000.
    if len(x) > 1000:
        x = x[:1000]
        y = y[:1000]
    accuracy = mc.evaluate(x, y)
    adv_res.append(accuracy)

    advs = np.zeros((len(ATTACK_LIST), x.shape[0], x.shape[1]),
                    dtype=np.float32)
    pred_advs = -np.ones((len(ATTACK_LIST), len(y)),
                         dtype=np.int32)  # assign -1 as initial value
    pred_clean = mc.predict(x)

    advs[0] = x
    pred_advs[0] = pred_clean

    att_param_json = open(os.path.join(DIR_PATH, 'AttackParams.json'))
    att_params = json.load(att_param_json)

    for i, att_name in enumerate(ATTACK_LIST):
        # Clean set is only used in evaluation phase.
        if att_name == 'Clean':
            continue

        logger.debug('[%d]Running %s attack...', i, att_name)
        kwargs = att_params[att_name]
        logger.debug('%s params: %s', att_name, str(kwargs))
        Attack = get_attack(att_name)
        attack = Attack(mc, **kwargs)
        adv, pred_adv, x_clean, pred_clean_ = attack.generate(
            use_testset=False, x=x)
        assert np.all(pred_clean == pred_clean_)
        assert np.all(x == x_clean)
        logger.info('created %d adv examples using %s from %s', len(advs[i]),
                    att_name, dname)
        not_match = pred_adv != pred_clean
        success_rate = len(not_match[not_match == True]) / len(pred_clean)
        accuracy = mc.evaluate(adv, y)
        advs[i] = adv
        pred_advs[i] = pred_adv
        logger.info('Success rate of %s: %f', att_name, success_rate)
        logger.info('Accuracy on %s: %f', att_name, accuracy)
        adv_res.append(accuracy)
    adv_file.write(','.join([str(r) for r in adv_res]) + '\n')

    # STEP 4: train defences
    blocked_res = np.zeros(len(TITLE_RESULTS), dtype=np.int32)
    blocked_res[0] = index
    for def_name in DEFENCE_LIST:
        logger.debug('Running %s...', def_name)
        if def_name == 'AdvTraining':
            attack = BIMContainer(mc,
                                  eps=0.3,
                                  eps_step=0.1,
                                  max_iter=100,
                                  targeted=False)
            defence = AdversarialTraining(mc, [attack])
            defence.fit(max_epochs=max_epochs,
                        batch_size=BATCH_SIZE,
                        ratio=ADV_TRAIN_RATIO)
            block_attack(0, advs, defence, def_name, blocked_res)
        elif def_name == 'Destillation':
            # A single temperature is used for all sets
            temp = 20
            defence = DistillationContainer(mc,
                                            distill_model,
                                            temperature=temp,
                                            pretrained=False)
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(1, advs, defence, def_name, blocked_res)
        elif def_name == 'Squeezing':
            defence = FeatureSqueezing(
                mc,
                SQUEEZER_FILTER_LIST,
                bit_depth=SQUEEZER_DEPTH,
                sigma=SQUEEZER_SIGMA,
                pretrained=True,
            )
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(2, advs, defence, def_name, blocked_res)
        elif def_name == 'AD':
            ad_param_file = open(AD_PARAM_FILE)
            # BreastCancer uses a different set of parameters
            if dname == 'BreastCancerWisconsin':
                param_file = os.path.join(DIR_PATH, 'AdParamsBC.json')
                ad_param_file = open(param_file)
            ad_params = json.load(ad_param_file)
            logger.debug('AD params: %s', str(ad_params))
            defence = ApplicabilityDomainContainer(
                mc, hidden_model=model.hidden_model, **ad_params)
            defence.fit()
            block_attack(3, advs, defence, def_name, blocked_res)

    res_file.write(','.join([str(r) for r in blocked_res]) + '\n')
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-m', '--model', type=str, required=True,
        help='a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format')
    parser.add_argument(
        '-p', '--param', type=str, required=True,
        help='a JSON config file which contains the parameters for the cross validation')
    parser.add_argument(
        '-a', '--adv', type=str,
        help='file name of adv. examples for testing. If it\'s none, the program will ignore testing. The name should in "<model>_<dataset>_<attack>_adv.npy" format')
    parser.add_argument(
        '-s', '--seed', type=int, default=4096,
        help='the seed for random number generator')
    parser.add_argument(
        '-v', '--verbose', action='store_true', default=False,
        help='set logger level to debug')
    parser.add_argument(
        '-l', '--savelog', action='store_true', default=False,
        help='save logging file')
    parser.add_argument(
        '-i', '--ignore', action='store_true', default=False,
        help='Ignore saving the results. Only returns the results from terminal.')
    parser.add_argument(
        '-w', '--overwrite', action='store_true', default=False,
        help='overwrite the existing file')
    args = parser.parse_args()
    model_file = args.model
    param_file = args.param
    adv_file = args.adv
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    does_ignore = args.ignore
    overwrite = args.overwrite

    model_name, data_name = parse_model_filename(model_file)

    # set logging config. Run this before logging anything!
    set_logging('cross_validation', data_name, verbose, save_log)

    # check files
    for file_path in [model_file, param_file]:
        if not os.path.exists(file_path):
            logger.warning('%s does not exist. Exit.', file_path)
            sys.exit(0)
    if adv_file is not None and not os.path.exists(adv_file):
        logger.warning('%s does not exist. Exit.', adv_file)
        sys.exit(0)

    # read parameters
    with open(param_file) as param_json:
        params = json.load(param_json)

    # show parameters
    print('[cv] Running cross validation on {} with {}...'.format(
        model_file, data_name))
    logger.info('Start at      : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file    :%s', model_file)
    logger.info('adv file      :%s', adv_file)
    logger.info('model         :%s', model_name)
    logger.info('dataset       :%s', data_name)
    logger.info('param file    :%s', param_file)
    logger.info('seed          :%d', seed)
    logger.info('verbose       :%r', verbose)
    logger.info('save_log      :%r', save_log)
    logger.info('Ignore saving :%r', does_ignore)
    logger.info('overwrite     :%r', overwrite)
    logger.debug('params       :%s', str(params))

    # load parameters
    k_range = params['k_range']
    z_range = params['z_range']
    kappa_range = params['kappa_range']
    gamma_range = params['gamma_range']
    epsilon = params['epsilon']
    num_folds = params['num_folds']
    batch_size = params['batch_size']
    sample_ratio = params['sample_ratio']
    logger.info('k_range       :%s', str(k_range))
    logger.info('z_range       :%s', str(z_range))
    logger.info('kappa_range   :%s', str(kappa_range))
    logger.info('gamma_range   :%s', str(gamma_range))
    logger.info('epsilon       :%.1f', epsilon)
    logger.info('num_folds     :%d', num_folds)
    logger.info('batch_size    :%d', batch_size)
    logger.info('sample_ratio  :%.1f', sample_ratio)

    # reset seed
    master_seed(seed)

    dc = DataContainer(DATASET_LIST[data_name], get_data_path())
    dc(shuffle=True, normalize=True, size_train=0.8)
    logger.info('Sample size: %d', len(dc))

    Model = get_model(model_name)
    # there models require extra keyword arguments
    if data_name in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        kwargs = {
            'num_features': num_features,
            'hidden_nodes': num_features*4,
            'num_classes': num_classes,
        }
        model = Model(**kwargs)
    else:
        model = Model()
    logger.info('Use %s model', model.__class__.__name__)
    mc = ModelContainerPT(model, dc)
    mc.load(model_file)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    ad = ApplicabilityDomainContainer(
        mc, hidden_model=model.hidden_model, sample_ratio=sample_ratio)
    cross_validation = CrossValidation(
        ad,
        num_folds=num_folds,
        k_range=k_range,
        z_range=z_range,
        kappa_range=kappa_range,
        gamma_range=gamma_range,
        epsilon=epsilon,
    )
    bim_attack = BIMContainer(
        mc,
        eps=0.3,
        eps_step=0.1,
        max_iter=100,
        targeted=False,
    )
    cross_validation.fit(bim_attack)

    # test optimal parameters
    if adv_file is not None:
        postfix = ['adv', 'pred', 'x', 'y']
        data_files = [adv_file.replace('_adv', '_' + s) for s in postfix]
        adv = np.load(data_files[0], allow_pickle=False)
        pred_adv = np.load(data_files[1], allow_pickle=False)
        x = np.load(data_files[2], allow_pickle=False)
        pred = np.load(data_files[3], allow_pickle=False)

        # fetch optimal parameters
        ad = ApplicabilityDomainContainer(
            mc,
            hidden_model=model.hidden_model,
            k2=cross_validation.k2,
            reliability=cross_validation.reliability,
            sample_ratio=sample_ratio,
            kappa=cross_validation.kappa,
            confidence=cross_validation.confidence,
        )
        logger.info('Params: %s', str(ad.params))
        ad.fit()
        blocked_indices = ad.detect(x, pred, return_passed_x=False)
        logger.info('Blocked %d/%d on clean data',
                    len(blocked_indices), len(x))
        blocked_indices = ad.detect(adv, pred_adv, return_passed_x=False)
        logger.info('Blocked %d/%d on adv. examples.',
                    len(blocked_indices), len(adv))

    # save results
    if not does_ignore:
        file_name = name_handler(
            model_name + '_' + data_name, 'csv', overwrite=overwrite)
        cross_validation.save(file_name)
def experiment(index, dname, mname, max_epochs, adv_file, res_file):
    # STEP 1: select data
    dc = get_data_container(dname, use_shuffle=True, use_normalize=True)
    Model = get_model(mname)
    model = Model()
    distill_model = Model()
    logger.info('Selected %s model', model.__class__.__name__)

    # STEP 2: train models
    mc = ModelContainerPT(model, dc)
    mc.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)
    adv_res = [accuracy]

    # STEP 3: generate adversarial examples
    # no more than 1000 samples are required
    n = 1000 if len(dc.x_test) >= 1000 else len(dc.x_test)
    # idx = np.random.choice(len(dc.x_test), n, replace=False)
    # x = dc.x_test[idx]
    # y = dc.y_test[idx]
    x = dc.x_test[:n]
    y = dc.y_test[:n]
    accuracy = mc.evaluate(x, y)
    adv_res.append(accuracy)

    advs = np.zeros(
        tuple([len(ATTACK_LIST)] + list(x.shape)),
        dtype=np.float32)
    pred_advs = -np.ones(
        (len(ATTACK_LIST), n),
        dtype=np.int32)  # assign -1 as initial value
    pred_clean = mc.predict(x)

    advs[0] = x
    pred_advs[0] = pred_clean

    att_param_json = open(os.path.join(DIR_PATH, 'AttackParams.json'))
    att_params = json.load(att_param_json)

    for i, att_name in enumerate(ATTACK_LIST):
        # Clean set is only used in evaluation phase.
        if att_name == 'Clean':
            continue

        logger.debug('[%d]Running %s attack...', i, att_name)
        kwargs = att_params[att_name]
        logger.debug('%s params: %s', att_name, str(kwargs))
        Attack = get_attack(att_name)
        attack = Attack(mc, **kwargs)
        adv, pred_adv, x_clean, pred_clean_ = attack.generate(
            use_testset=False,
            x=x)
        assert np.all(pred_clean == pred_clean_)
        assert np.all(x == x_clean)
        logger.info('created %d adv examples using %s from %s',
                    len(advs[i]),
                    att_name,
                    dname)
        not_match = pred_adv != pred_clean
        success_rate = len(not_match[not_match == True]) / len(pred_clean)
        accuracy = mc.evaluate(adv, y)
        advs[i] = adv
        pred_advs[i] = pred_adv
        logger.info('Success rate of %s: %f', att_name, success_rate)
        logger.info('Accuracy on %s: %f', att_name, accuracy)
        adv_res.append(accuracy)
    adv_file.write(','.join([str(r) for r in adv_res]) + '\n')

    # STEP 4: train defences
    blocked_res = np.zeros(len(TITLE_RESULTS), dtype=np.int32)
    blocked_res[0] = index
    for def_name in DEFENCE_LIST:
        logger.debug('Running %s...', def_name)
        if def_name == 'AdvTraining':
            attack = BIMContainer(
                mc,
                eps=0.3,
                eps_step=0.1,
                max_iter=100,
                targeted=False)
            defence = AdversarialTraining(mc, [attack])
            defence.fit(max_epochs=max_epochs,
                        batch_size=BATCH_SIZE,
                        ratio=ADV_TRAIN_RATIO)
            block_attack(0, advs, defence, def_name, blocked_res)
        elif def_name == 'Destillation':
            defence = DistillationContainer(
                mc, distill_model, temperature=DISTILL_TEMP, pretrained=False)
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(1, advs, defence, def_name, blocked_res)
        elif def_name == 'Squeezing':
            defence = FeatureSqueezing(
                mc,
                SQUEEZER_FILTER_LIST,
                bit_depth=SQUEEZER_DEPTH,
                sigma=SQUEEZER_SIGMA,
                kernel_size=SQUEEZER_KERNEL,
                pretrained=True,
            )
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(2, advs, defence, def_name, blocked_res)
        elif def_name == 'AD':
            ad_param_file = open(AD_PARAM_FILE)
            ad_params = json.load(ad_param_file)
            logger.debug('AD params: %s', str(ad_params))
            defence = ApplicabilityDomainContainer(
                mc,
                hidden_model=model.hidden_model,
                **ad_params)
            defence.fit()
            block_attack(3, advs, defence, def_name, blocked_res)

    res_file.write(','.join([str(r) for r in blocked_res]) + '\n')
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-m', '--model', type=str, required=True,
        help='a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format')
    parser.add_argument(
        '-e', '--epoch', type=int, required=True,
        help='the number of max epochs for training')
    parser.add_argument(
        '-r', '--ratio', type=float, required=True,
        help='the percentage of adversarial examples mix to the training set.')
    parser.add_argument(
        '-b', '--batchsize', type=int, default=128, help='batch size')
    parser.add_argument(
        '-t', '--train', action='store_true', default=False,
        help='Force the model to retrain without searching existing pretrained file')
    parser.add_argument(
        '-s', '--seed', type=int, default=4096,
        help='the seed for random number generator')
    parser.add_argument(
        '-v', '--verbose', action='store_true', default=False,
        help='set logger level to debug')
    parser.add_argument(
        '-l', '--savelog', action='store_true', default=False,
        help='save logging file')
    parser.add_argument(
        '-B', '--bim', action='store_true', default=False,
        help='Apply BIM attack')
    parser.add_argument(
        '-C', '--carlini', action='store_true', default=False,
        help='Apply Carlini L2 attack')
    parser.add_argument(
        '-D', '--deepfool', action='store_true', default=False,
        help='Apply DeepFool attack')
    parser.add_argument(
        '-F', '--fgsm', action='store_true', default=False,
        help='Apply FGSM attack')
    parser.add_argument(
        '-S', '--saliency', action='store_true', default=False,
        help='Apply Saliency Map attack')
    args = parser.parse_args()
    model_file = args.model
    max_epochs = args.epoch
    ratio = args.ratio
    batch_size = args.batchsize
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    need_train = args.train

    model_name, data_name = parse_model_filename(model_file)

    # Which attack should apply?
    attack_list = []
    if args.bim:
        attack_list.append('BIM')
    if args.carlini:
        attack_list.append('Carlini')
    if args.deepfool:
        attack_list.append('DeepFool')
    if args.fgsm:
        attack_list.append('FGSM')
    if args.saliency:
        attack_list.append('Saliency')

    # Quit, if there is nothing to do.
    if len(attack_list) == 0:
        logger.warning('Neither received any filter nor any attack. Exit')
        sys.exit(0)

    y_file = os.path.join(
        'save', f'{model_name}_{data_name}_{attack_list[0]}_y.npy')
    attack_files = [
        os.path.join(
            'save', f'{model_name}_{data_name}_{attack_list[0]}_x.npy')
    ]
    for attack_name in attack_list:
        attack_files.append(os.path.join(
            'save', f'{model_name}_{data_name}_{attack_name}_adv.npy'))
    # the 1st file this the clean inputs
    attack_list = ['clean'] + attack_list

    # Do I need train the discriminator?
    pretrain_file = f'AdvTrain_{model_name}_{data_name}.pt'
    if not os.path.exists(os.path.join('save', pretrain_file)):
        need_train = True

    # set logging config. Run this before logging anything!
    set_logging(LOG_NAME, data_name, verbose, save_log)

    # show parameters
    print(f'[{LOG_NAME}] Running adversarial training on {model_name}...')
    logger.info('Start at    : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file  :%s', model_file)
    logger.info('model       :%s', model_name)
    logger.info('dataset     :%s', data_name)
    logger.info('max_epochs  :%d', max_epochs)
    logger.info('ratio  :%d', ratio)
    logger.info('batch_size  :%d', batch_size)
    logger.info('seed        :%d', seed)
    logger.info('verbose     :%r', verbose)
    logger.info('save_log    :%r', save_log)
    logger.info('need train  :%r', need_train)
    logger.info('attacks     :%s', ', '.join(attack_list))

    # check files
    for file_name in [model_file, y_file] + attack_files:
        if not os.path.exists(file_name):
            logger.error('%s does not exist!', file_name)
            raise FileNotFoundError('{} does not exist!'.format(file_name))

    # reset seed
    master_seed(seed)

    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # select a model
    Model = get_model(model_name)
    model = Model()
    if data_name in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        model = IrisNN(
            num_features=num_features,
            hidden_nodes=num_features*4,
            num_classes=num_classes)
    classifier_mc = ModelContainerPT(model, dc)
    classifier_mc.load(model_file)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    attack = BIMContainer(
        classifier_mc,
        eps=0.3,
        eps_step=0.1,
        max_iter=100,
        targeted=False)

    adv_trainer = AdversarialTraining(classifier_mc, [attack])
    if need_train:
        adv_trainer.fit(max_epochs=max_epochs,
                        batch_size=batch_size, ratio=ratio)
        adv_trainer.save(pretrain_file, overwrite=True)
    else:
        adv_trainer.load(os.path.join('save', pretrain_file))

    y = np.load(y_file, allow_pickle=False)
    for i in range(len(attack_list)):
        adv_file = attack_files[i]
        adv_name = attack_list[i]
        logger.debug('Load %s...', adv_file)
        adv = np.load(adv_file, allow_pickle=False)
        accuracy = classifier_mc.evaluate(adv, y)
        logger.info('Accuracy on %s set: %f', adv_name, accuracy)
        blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
        logger.info('Blocked %d/%d samples on %s',
                    len(blocked_indices), len(adv), adv_name)
def main():
    data_name = 'Iris'
    set_logging('advTraining', data_name, True, True)

    dc = DataContainer(DATASET_LIST[data_name], get_data_path())
    dc()

    model_file = os.path.join('save', 'IrisNN_Iris_e200.pt')
    num_features = dc.dim_data[0]
    num_classes = dc.num_classes
    classifier = IrisNN(
        num_features=num_features,
        hidden_nodes=num_features*4,
        num_classes=num_classes,
    )

    classifier_mc = ModelContainerPT(classifier, dc)
    classifier_mc.load(model_file)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    attack = BIMContainer(
        classifier_mc,
        eps=0.3,
        eps_step=0.1,
        max_iter=100,
        targeted=False)

    adv_trainer = AdversarialTraining(classifier_mc, [attack])
    # adv_trainer.fit(max_epochs=100, batch_size=64, ratio=1)
    # adv_trainer.save('AdvTrain_IrisNN_Iris', overwrite=True)

    file_name = os.path.join('save', 'AdvTrain_IrisNN_Iris.pt')
    adv_trainer.load(file_name)

    x = np.load(os.path.join('save', 'IrisNN_Iris_BIM_x.npy'),
                allow_pickle=False)
    y = np.load(os.path.join('save', 'IrisNN_Iris_BIM_y.npy'),
                allow_pickle=False)
    blocked_indices = adv_trainer.detect(x, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s',
                len(blocked_indices), len(x), 'clean')

    adv = np.load(os.path.join(
        'save', 'IrisNN_Iris_BIM_adv.npy'), allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'BIM', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s',
                len(blocked_indices), len(adv), 'BIM')

    adv = np.load(os.path.join(
        'save', 'IrisNN_Iris_Carlini_adv.npy'), allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'Carlini', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s',
                len(blocked_indices), len(adv), 'Carlini')

    adv = np.load(os.path.join(
        'save', 'IrisNN_Iris_DeepFool_adv.npy'), allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'DeepFool', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s',
                len(blocked_indices), len(adv), 'DeepFool')

    adv = np.load(os.path.join(
        'save', 'IrisNN_Iris_FGSM_adv.npy'), allow_pickle=False)
    accuracy = classifier_mc.evaluate(adv, y)
    logger.info('Accuracy on %s set: %f', 'FGSM', accuracy)
    blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
    logger.info('Blocked %d/%d samples on %s',
                len(blocked_indices), len(adv), 'FGSM')